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ABSTRACT

Pattern recognition on big data can be challenging for kernel ma-
chines as the complexity grows with the squared number of training
samples. In this work, we overcome this hurdle via the outlying data
sample removal pre-processing step. This approach removes less-
informative data samples and trains the kernel machines only with
the remaining data, and hence, directly reduces the complexity by
reducing the number of training samples. To enhance the classifi-
cation performance, the outlier removal process is done such that
the discriminant information of the data is mostly intact. This is
achieved via the novel Outlier-Removal Discriminant Information
(ORDI) metric, which measures the contribution of each sample to-
ward the discriminant information of the dataset. Hence, the ORDI
metric can be used together with the simple filter method to effec-
tively remove insignificant outliers to both reduce the computational
cost and enhance the classification performance. We experimentally
show on two real-world datasets at the sample removal ratio of 0.2
that, with outlier removal via ORDI, we can simultaneously (1) im-
prove the accuracy of the classifier by 1%, and (2) provide significant
saving on the total running time by 1.5x and 2x on the two datasets.
Hence, ORDI can provide a win-win situation in this performance-
complexity tradeoff of the kernel machines for big data analysis.

Index Terms— Classification, big data, kernel machines, dis-
criminant information, outlier removal

1. INTRODUCTION

Kernel methods [1, 2] have been successful techniques in pattern
recognition for a variety of applications, e.g. speech [3], image
[4], medical diagnosis [5], etc. The underlying mechanic of ker-
nel methods is the kernel matrix. However, given N training sam-
ples, the kernel matrix scales to O(N2) in complexity. This can
be a limiting factor when dealing with a large dataset, which can
consist of over a million training samples. Previous works have cir-
cumvented this challenge mostly via the kernel matrix approxima-
tion [6, 7, 8, 9, 10, 11]. On the other hand, an alternative approach
that has not been thoroughly investigated is via outlying data sample
removal or simply, outlier removal. As suggested by Vapnik [12],
Burges and Scholkopf [13], and Blum and Langley [14], an ability
to de-emphasize bad training samples can be crucial to the success
of a learning machine, and increase the learning rate by confining the
search space of hypotheses. From this perspective, the challenge of
large training samples may be addressed effectively via the outlying
data removal process [15, 16, 14].

This work focuses on the outlying data removal approach for
large kernel machines. Though, it is important to point out that, these
two lines of approaches are actually complementary since one works
on the features, while the other works on the samples. The outlier

removal approach to large-scaled kernel methods aims at trimming a
subset of the training data samples a priori, and train the model only
with the remaining subset of data [16]. This requires a metric to pre-
dict the quality of each data sample. Since this work focuses on the
classification problem via kernel machines, we adopt Fisher’s dis-
criminant analysis [17, 18] as the basis of our quality measure. This
scheme has been theoretically proven to be optimal for classifica-
tion under the Gaussian assumption [19, 20, 21]; and experimentally
shown to be effective for building a classifier [22, 17, 23], designing
a compression algorithm [24], and selecting kernel functions [25].

Particularly, we develop and propose the Outlier-Removal Dis-
criminant Information (ORDI) as the quantitative metric for measur-
ing the contribution of each data sample toward the pattern recog-
nition task. ORDI can be computed, and, more remarkably, can
be kernelized very efficiently with O(N) complexity. Hence, the
ORDI score of the kernel-embedded samples can be computed in
linear time. Our proposed method then uses the ORDI score with a
simple filter method to remove outlying data from the training set.
Finally, we experimentally show on two real-world datasets that the
ORDI filtering method can improve the classification accuracy by
1%, while effectively shortening the total running time by 1.5x and
2x on the two datasets. In addition, when compared to three related
works, we show that the ORDI filtering method can significantly out-
perform all of them on the classification performance by as much as
15%. Hence, our ORDI filtering method has the potential to present
a win-win situation for the performance-complexity tradeoff.

2. RELATED WORKS

There are two primary approaches for efficient large-scaled kernel
machines. The prominent approach in the literature is via the ker-
nel matrix approximation [6, 7, 8, 9, 10], such as the Nystrom ap-
proximation [11, 10] and the random kitchen sinks [6, 7]. The other
approach is via the data sample selection or outlying data sample re-
moval [15, 16, 14]. This approach uses only a subset of the training
samples for the learning process.

These two methods are complimentary, i.e. both can be used
jointly to provide maximum speed-up. Since our work follows the
latter approach, we focus this discussion on the outlying data re-
moval method. Blum and Langley [14] categorize works on outly-
ing data removal for kernel machines into three types – the embed-
ded method [14], the wrapper method [15, 16], and the filter method
[26]. Our work falls into the filter method, and we experimentally
compare our method to one previous filter method, as well as two
previous wrapper methods. The embedded method, meanwhile, has
not been shown in the literature to be effective in recent years.

The two wrapper methods iteratively train a classifier on the se-
lect samples, and use the distance between the decision hyperplane
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and the remaining samples to select the next samples. The first uses
the active selection criterion (ACT WRAPPER) [15], which selects
the samples that are closest to the current hyperplane. The other
uses the gradient selection criterion (GRAD WRAPPER) [15], which
selects the most mis-classified samples.

The filter method is based on the Johnson-Lindenstrauss (JL)
transform (JL TRANSFORM) [26], which can preserve the separabil-
ity of the training data after trimming. One simple way to implement
this method is via a random selection of the data samples [26].

3. PRELIMINARIES

3.1. Discriminant Information

Derived from the bases of Fisher’s discriminant analysis [17] and
mutual information to the utility subspace [21, 20], the discriminant
information (DI), ψ, is a metric for determining the separability of
the data for classification. It has been shown – both theoretically
[20, 21] and empirically [17, 25, 23, 27] – to be indicative of the
classification ability of learning machines. Hence, we use the dis-
criminant information as the basis of our analysis on the importance
of each data sample toward the learning process.

More formally, given a supervised training dataset {X ∈
RM×N ,y ∈ RN} with M features and N samples, define the
scatter matrix and the between-class scatter matrix, respectively, as

S̄ = X̄X̄T ; SB =

L∑
l=1

Nlµ̄lµ̄l
T ,

where X̄ is the centered data, µ̄l is the centered class-l mean,
Nl is the number of samples in class l, and L is the number
of classes. Then, the discriminant information (ψ) is defined as
ψ = tr(S̄−1SB) [1, 20, 21, 18].

Next, suppose a sample x is removed from the training data. Let
us denote the new discriminant information as tr(S̄′−1S′B), where
S̄′ and S′B are derived from the remaining training data. Then define
the Outlier-Removal Discriminant Information (ORDI) of x as,

dψ(x) = tr(S̄−1SB)− tr(S̄′−1S′B).

Since dψ(x) indicates the reduction in the discriminant information
caused by removing x, it can be used as a metric for data sample re-
moval. However, the exact computation of dψ(x) can be expensive,
as it requires at least one matrix inversion. Therefore, in Section
4.2, we derive an approximation of dψ(x) that can be computed ef-
ficiently even in the kernel-embedded feature space.

3.2. Linear Algebra

Our analysis requires the following theorems in linear algebra.

Theorem 1 (Merikoski-Sarria-Tarazaga [28]). The non-increasingly
ordered singular values of a matrix A ∈ RM×N have the values of
0 ≤ σi ≤ ‖A‖F√i , where ‖·‖F is the Frobenius norm of a matrix.

Theorem 2 (von Neumann [29]). Let σi(A) and σi(B) be the non-
increasingly ordered singular values of A,B ∈ RM×N . Then,
tr(ABT ) ≤ ΣRi=1σi(A)σi(B), where R = min{M,N}.

4. METHOD

4.1. Overview

We propose the ORDI data sample filtering method as follows.
Given a training dataset {xi, y(i)}Ni=1, derive dψ(xi) for all sam-
ples, and then use dψ(xi) as the metric for the filter method in the

outlier removal process. Since high dψ(xi) means that removing
xi significantly reduces the discriminant information of the train-
ing data, the samples are sorted in the decreasing order of their
dψ(xi), and the filter stage simply removes the lowest P samples.
Finally, we note that the dψ(xi) metric can be used with the wrap-
per method as well. However, in this work, we consider the simpler
filter method, and dψ(xi) for each sample is only derived once.

4.2. Outlier-Removal Discriminant Information

The main challenge of the ORDI filtering method is to compute
dψ(xi) efficiently and effectively. In addition, since the main mo-
tivation of this work is from the kernel methods, the computation of
dψ(xi) should also be kernelizable. The following theorem is our
main theoretical result, which possesses all of the desired properties.

Theorem 3. Given a supervised training dataset {X ∈ RM×N ,y ∈
RN} and a kernel function k(xi,xj), the Outlier-Removal Discrim-
inant Information (ORDI) dψ(x) of the sample x is bounded by

dψ(x) ≤ βκx

ρ(κx − ρ)
+
H4,1/2(δx + κx)

ρ(Nx − 1)
+

κx(δx + κx)

ρ(κx − ρ)(Nx − 1)
,

where the variables are defined as follows. β =
∑L
l=1 Nlk(µl,µl);

κx = k(x,x); Nx is the number of the training samples in the
class as that x belongs to (including x); H4,1/2 is the generalized
harmonic number; ρ > 0 is the ridge parameter; µl is the class-
mean of the lth class, and Nl is the number of samples in the lth

class; µx is the class-mean of the class x belongs to; and

δx =Nx[k(µx,µx)2 − 4k(µx,µx) · k(x,µx)

+ 2κxk(µx,µx) + 2k(x,µx)2]1/2.

Proof. The proof works on the kernel-embedded feature space: x ∈
RM 7→ φ ∈ RJ , where k(xi,xj) = φTi φj . The discriminant
information is defined as ψ = S̄−1SB , where S̄ = ΦΦT and SB =∑L
l=1 nlνlν

T
l =

∑L
l=1 Sl, where νl is the class-mean of the lth

class. For notational clarity and simplicity, we assume that all of the
data are centered, and that the data mean does not change when one
sample is removed. This is justifiable when N is very large, which
is the scenario we consider here.

Removing a sample φ causes the two scatter matrices to change:
S̄′ = S̄ − φφT and S′B = SB + EB , where EB is derived as
follows. Suppose the removed sample φ belongs to class l = `, then
S′B = SB − S` + S

′
`, where S′` = (N` − 1)ν′`ν

′T
` , and ν′` =

(ν`N` − φ)/(N` − 1). With algebraic modification, we have

EB =
(N`ν`ν

T
` −N`ν`φT −N`φνT` + φφT )

(N` − 1)
(1)

From this, we have that rank(EB) ≤ 4 [30], and we can write

dψ(x) = tr[S̄−1SB−S̄′−1S′B ] = tr[S̄−1SB−(S̄−φφT )−1(SB+EB)]
(2)

The latter term can be expanded via the Woodbury identity [30]:

(S̄− φφT )−1(SB + EB) = (S̄−1 +
S̄−1φφT S̄−1

1− φT S̄−1φ
)(SB + EB)

Substitute this term into Eq. (2),

dψ(x) = tr[
S̄−1φφT S̄−1SB

φT S̄−1φ− 1
+ S̄−1ẼB +

S̄−1φφT S̄−1EB

φT S̄−1φ− 1
],

(3)
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where ẼB = −EB . To find the upper-bound for dψ(x), we derive
such bound for the three summands separately since trace is additive.

The first term: tr[ S̄
−1φφT S̄−1SB

φT S̄−1φ−1
]. With Theorem 2, and the

fact that φφT is a rank-1 matrix,

tr[
S̄−1φφT S̄−1SB

φT S̄−1φ− 1
] ≤

∑
i σi(φφ

T )σi(S̄
−1SBS̄−1)

(φT S̄−1φ− 1)

≤ (φTφ)σ1(S̄−1SBS̄−1)

(φT S̄−1φ− 1)
, (4)

where σ1 is the highest singular value. σ1(S̄−1SBS̄−1) is equiva-
lent to the spectral norm, so we use the submultiplicative property,

σ1(S̄−1SBS̄−1) =
∥∥S̄−1SBS̄−1

∥∥
2
≤
∥∥S̄−1

∥∥2

2
‖SB‖2 (5)

We then consider these two terms individually. First,
∥∥S̄−1

∥∥2

2
=

σ1(S̄−1) = 1/σJ(S̄), where σJ(S̄) is the smallest singular value of
S̄. Since typically, S̄ is regularized by a ridge ρ > 0, i.e. S̄ + ρI,
it can be said that σJ(S̄) > ρ, so we can bound

∥∥S̄−1
∥∥2

2
< 1/ρ.

Next, consider the norm ‖SB‖2 =
∥∥∥∑L

l=1 Nlνlν
T
l

∥∥∥
2
. With the

triangular inequality, we can write,

‖SB‖2 ≤
L∑
l=1

Nl

∥∥∥νlνTl ∥∥∥
2

=

L∑
l=1

Nlν
T
l νl = β. (6)

Hence, we can bound Eq. (5) as σ1(S̄−1SBS̄−1) ≤ β/ρ2. To
conclude the upper-bound derivation of Eq. (4), we consider its
denominator. Since we are interested in the upper-bound, we can as-
sume that φT S̄−1φ > 1. This assumption is conservative because,
when the assumption does not hold, it would overestimate the im-
portance of the sample. Hence, we would not discard the samples we
should keep. Then, we use the property proved by von Neumann (cf.
[31, 30]) to write φT S̄−1φ = tr(φT S̄−1φ) = tr(S̄−1φφT ) =
cσ1(S̄−1)φTφ, where c ∈ [−1, 1]. Hence, for simplicity, we
use the following approximation: φT S̄−1φ ≈ σ1(S̄−1)φTφ =
(φTφ)/ρ. Then, we finally arrive at the upper-bound for Eq. (4):

tr[
S̄−1φφT S̄−1SB

φT S̄−1φ− 1
] ≤ β(φTφ)

ρ(φTφ− ρ)
(7)

The second term: tr(S̄−1ẼB). From Theorem 2,

tr(S̄−1ẼB) ≤
4∑
i=1

σi(S̄
−1)σi(ẼB), (8)

since rank(ẼB) ≤ 4. Then, using Theorem 1 and the scaling-by-

scalar property of the norm, we get σi(ẼB) ≤ ‖
ẼB‖F√

i
=
‖EB‖F√

i
.

Substitute in the definition of EB and use the triangular inequality,

σi(ẼB) ≤
∥∥N`ν`νT` −N`ν`φT −N`φνT` ∥∥F +

∥∥φφT∥∥
F

(N` − 1)
√
i

Then, using the property that ‖A‖2F = tr(ATA),

σi(ẼB) ≤ 1

(N` − 1)
√
i

[
N`[(ν

T
` ν`)

2 − 4(νT` ν`)(ν
T
` φ)

+2(νT` ν`)(φ
Tφ) + 2φTν`]

1/2 + φTφ
]

and with the definition of δx, we get σi(ẼB) ≤ (δx+φTφ)

(N`−1)
√
i

. Sub-

stitute into Eq. (8) and use the bound on σ1(S̄−1) < 1/ρ from the
derivation of the upper-bound of the first term, and we arrive at,

tr(S̄−1ẼB) ≤
4∑
i=1

(δx + φTφ)

ρ(N` − 1)
√
i
≤ (δx + φTφ)

ρ(N` − 1)
H4,1/2 (9)

The third term: tr[ S̄
−1φφT S̄−1EB

φT S̄−1φ−1
]. Using similar techniques as

in the first term, we can write

tr[
S̄−1φφT S̄−1EB

φT S̄−1φ− 1
] ≤ (φTφ)σ1(S̄−1EBS̄−1)

(φTφ/ρ− 1)
(10)

Similar to the first term, we have σ1(S̄−1EBS̄−1) ≤
∥∥S̄−1

∥∥2

2
‖EB‖2.

From the derivation in the second term and Theorem 1, we read-
ily get ‖EB‖2 = σ1(EB) ≤ ‖EB‖F ≤

(δx+φTφ)
(N`−1)

. Using the

upper-bound of
∥∥S̄−1

∥∥2

2
derived in the derivation in the first term,

we can bound the singular value as σ1(S̄−1EBS̄−1) ≤ (δx+φTφ)

ρ2(N`−1)
.

Substitute this into Eq. (10), and we get,

tr[
S̄−1φφT S̄−1EB

φT S̄−1φ− 1
] ≤ (φTφ)(δx + φTφ)

ρ(φTφ− ρ)(N` − 1)
(11)

Finally, putting the upper-bounds for the three additive terms in
Eq. (3) together; replacing N` with Nx; and using the kernel trick
k(xi,xj) = φTi φj , we have completed the proof.

Theorem 3 provides an approximate worst-case value of dψ(x).
This upper-bound can be used as a metric to determine the impor-
tance of each sample toward the overall discriminant information.
The rationale is that, the higher the value, the more important the
data sample toward the classification task. Moreover, it incorporates
the kernel trick, so the dψ(x) in the kernel-embedded feature space
can readily be computed from the kernel function.

4.3. Complexity Analysis

We consider the complexity with respect to the number of kernel op-
erations, i.e. k(·, ·). For example, given N samples, to compute the
full kernel matrix, the complexity is O(N2). The effect of outlying
data removal on the computational complexity of the kernel matrix
is the reduction fromO(N2) toO(N ′2), where N ′ is the number of
remaining training samples. However, the outlier removal process
itself has an overhead computational cost, and we consider that of
the ORDI filtering method here.

For a given x, dψ(x) only requires three kernel operations, viz.
k(x,x), k(x,µx), and k(µx,µx) (or only one for shift-invariant
kernels). Since the filter method requires only one pass through
the dataset, the overhead of the ORDI filtering method is O(N).
With only linear additional complexity, the ORDI filtering method
can have significant saving on the overall computational complexity.

5. EXPERIMENTS

5.1. Datasets

We use two datasets as follows. (a) Human Activity Recognition Us-
ing Smartphones (HAR) [32] has 561 features derived from mobile
sensors. The classification task is to predict one of the 6 activities
the subject is performing. There are 2,947 samples for testing, and
7,352 samples for training. (b) Sensorless Drive Diagnosis (Drive)
[33] has 48 features derived from electric current drive signals, and
the classification task is to predict one of the 11 car conditions. There
are 11,000 samples for testing, and 47,509 samples for training.
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Fig. 1. Classification results on the HAR (Left) and Drive (Right)
datasets. Given the initial N training samples, N ′ is the remaining
samples after the outlier removal process. The x-axis is the sample
removal ratio (1-N ′/N ). The two annotated numbers on both plots
are the accuracy at ratio 0 and 0.2 using our ORDI filtering method.

5.2. Procedure

For all experiments, we use support vector machine (SVM) [34] as
the classifier with C = 1. Other parameters are selected via the
3-fold cross-validation including the kernel function, and the ridge
parameter ρ in dψ(x). The set of possible kernels includes linear,
poly2, poly3, and Gaussian with the γ ∈ 10−{1,2,3} (see [12] for
the definitions); and the set of possible ρ is 10{−2,−1,...,2}. For the
proposed ORDI filtering method (ORDI FILTER), each sample is first
ranked in descending order by its dψ(x) derived via Theorem 3.
Then, samples are removed such that there remains roughly equal
number of samples in each class. This is to ensure that the supervised
training process has samples in every class.

5.3. Results

Fig. 1 reports the classification results with outlier removal on the
two datasets. Let N be the initial number of available samples, and
N ′ be the number of samples used to train SVM. Then, the x-axis
corresponds to the sample removal ratio (1-N ′/N ). The ratio of 0 is
therefore the result when SVM is trained on the entire N samples.

5.3.1. Comparison to Other Methods

The results on both datasets show that our method (ORDI FILTER)
has the highest classification accuracy among other three methods
across almost all sample removal ratios. First, comparing to the two
wrapper methods (GRAD WRAPPER and ACT WRAPPER), our ORDI
filtering method yields significantly higher accuracy across all sam-
ple removal ratios, and is better by as much as 8% and 15% at 0.2
ratio on the HAR and Drive datasets, respectively.

Compared to the JL transform, ORDI FILTER performs better at
lower removal ratios, and by as much as 2.5% and 5% at the ratio
of 0.2 on the HAR and Drive datasets, respectively. Although the
JL transform performs slightly better at very high removal ratio (>
0.7), such high ratios are not favorable in practice since it might
intolerably hurt the generalization ability of the classifier [12]1.

5.3.2. Comparison to No Outlier Removal

The left-most point on the two plots in Fig. 1 corresponds to the
baseline performance when all samples are used for training. The

1For example, consider SVM, whose bound on test error is approximately
∝ 1/N ′ (cf. [12], pg 143). Assume that the test error bound using all sam-
ples is 5%; then the sample removal ratio of 0.2 would yield the error bound
of 6.25%, whereas the ratio of 0.7 would yield the error bound of 16.67%.

Fig. 2. The total running time (ORDI filtering + SVM training +
testing) across various sample removal ratios for the the HAR (Left),
and Drive (Right) datasets.

accuracy is 96.27% for HAR and 84.60% for Drive, as annotated.
The result from the ORDI filtering method shows that, by removing
0.2N training samples, there is a gain in the classification accuracy
by ∼ 1% on both datasets. This maybe partially explained by the
observation in [19, 14] that restricting the search space can facilitate
the learning process. Determining how much data to be removed
should be data-dependent and is a topic for future research.

5.4. Complexity Consideration

As discussed in Section 4.3, outlier removal via ORDI can reduce
the computational complexity from O(N2) to O(N ′2) with a small
additional cost ofO(N). We experimentally test this analysis on the
two datasets. The results of the total running time (ORDI filtering +
SVM training + testing), as reported in Fig. 2, confirm the compu-
tational saving provided by the ORDI filtering method. Moreover,
combining this time saving performance with the classification per-
formance in Fig. 1 at the sample removal ratio of 0.2, the ORDI
filtering method provides the computational savings of 1.5x and 2x
on HAR and Drive, respectively, while also providing the accuracy
performance gain of 1% on both datasets. These results show that the
ORDI filtering outlier removal method presents a win-win situation
in terms of classification performance and computational efficiency.

6. CONCLUSION

In this work, we present an outlying data sample removal method to
be used with kernel machines for big data analysis. We propose the
Outlier-Removal Discriminant Information (ORDI) filtering method
to remove non-discriminative training samples. ORDI ensures that
the remaining subset of training data preserves most of the separabil-
ity and, since ORDI can be kernelized, it can be computed efficiently
in the kernel-embedded space. Via experiments on two datasets, we
show that the ORDI outlier removal pre-processing step can both
improve the classification performance and reduce the total running
time of the kernel machine. Hence, it presents a promising prospect
for kernel machines on big data analysis.
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