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ABSTRACT

Power-consumption in small devices is dominated by off-
chip memory accesses, necessitating small models that can
fit in on-chip memory. In the task of text-dependent speaker
identification, we demonstrate a 16x byte-size reduction for
state-of-art small-footprint LCN/CNN/DNN speaker identifi-
cation models. We achieve this by using ternary quantization
that constrains the weights to {-1,0,1}. Our model comfort-
ably fits in the 1 MB on-chip BRAM of most off-the-shelf
FPGAs, allowing for a power-efficient speaker ID implemen-
tation with 100x fewer floating point multiplications, and
a 1000x decrease in estimated energy cost. Additionally,
we explore the use of depth-wise separable convolutions for
speaker identification, and show while significantly reduc-
ing multiplications in full-precision networks, they perform
poorly when ternarized. We simulate hardware designs for
inference on our model, the first hardware design targeted for
efficient evaluation of ternary networks and end-to-end neural
network-based speaker identification.

Index Terms— speaker identification, low-precision, en-
ergy, on-chip memory, FPGA

1. INTRODUCTION

Speaker identification (SID) is the task of identifying that a
speech sample belongs to a registered identity among a closed
set of speakers. Recently, speaker identification has enjoyed
a flurry of attention by researchers as more consumer de-
vices have started using SID as part of their authentication
sequence. State-of-art work has demonstrated success ap-
plying various end-to-end neural network architectures for
both text-dependent and text-independent speaker recognition
[1]. These methods exhibit performance on par traditional i-
vector/GMM speaker models, for short and medium-length
utterances [2].

In practical applications of speaker identification, efficient
evaluation of a model is as important as accuracy. Small de-
vices, such as cell phones, have limited energy and memory
budgets, placing a different set of demands on the choice of
model. Recent research on deep learning application-specific
integrated circuits (ASICs) has demonstrated that energy con-
sumption during network inference is dominated by off-chip

memory accesses (e.g. DRAM), which are an order of magni-
tude more power-expensive than accesses to the much smaller
on-chip memory (e.g. SRAM) [3]. To reduce power and
memory consumption for efficient inference, speaker verifi-
cation models would require small network sizes and fewer
multiplications along the chip’s critical path.

In this paper, we demonstrate applying numeric quantiza-
tion algorithms as an effective technique to reduce the model
size and complexity in the task of text-dependent speaker
identification. Our quantization to {1,0,-1} also reduces
inference-time multiplications by two orders of magnitude,
further reducing the energy consumption. We use our network
improvements in our hardware design simulations (targeted at
eventual evaluation of our speaker identification network on a
Xilinx Zync-7000 FPGA). To the best of our knowledge, this
is the first FPGA-design for neural network-based speaker
identification.

The next section describes the prior work in speaker iden-
tification and hardware translation of models. Sections 3 and
4 details our bitwidth-reduction training procedure and depth-
separable CNN architecture. In Sections 5 and 6, we describe
results from our baseline and bitwidth-reduction experiments
on SID networks. Section 7 describes our implementation of
one of our low-precision networks in FPGA, where we report
estimated power consumption results. We conclude with a
brief discussion of our results in Section 8.

All work can be found at https://github.com/
skoppula/sid-ternary-network. The repository
includes training scripts and links to pre-trained models and
training logs.

2. PRIOR WORK

Efficient hardware evaluation of neural networks has been
the focus of various research efforts in the past two years.
One avenue of research in the field has focused on build-
ing application-specific integrated circuits to efficiently eval-
uate large pre-trained neural networks ([4], [3], [5]). An-
other avenue of research has focused on algorithmic-based
model optimization: reducing model complexity by introduc-
ing sparsity and Huffman-encoding parameters [6], student-
teacher models to distill knowledge to smaller models [7],
bit-width reduction [8, 9, 10], and kernel-shaping techniques
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[11, 12]. These works have primarily been used for only com-
puter vision tasks, with the exception of [13], which is a lim-
ited demonstration of FPGA-based phoneme recognition.

Less work has focused on adapting speaker recognition
networks for efficient inference. [14] and [15] propose ar-
chitectures for small end-to-end SV networks, the smallest of
which is above 1 MB. Prior attempts at speaker verification
in FPGA has focused on implementing speaker recognition
using GMM and SVM-based systems [16, 17]. Our key con-
tribution in this work is demonstrating drastically smaller
networks for speaker identification, that are optimized for
energy-efficient inference on custom hardware.

3. TRAINING LOW-BITWIDTH PARAMETERS

To reduce the size of networks, we constrain the network
weights to a small set of quantized values instead of the stan-
dard 32-bit floating point. In particular, we explore trained
ternary quantization (TTQ), a method to learn weights in the
set {-1,0,1} [8]. In this work, we demonstrate that TTQ can
be used successfully in text-dependent speaker identification,
with modification to the network’s initialization and opera-
tional changes to decompose ternary networks into hardware-
amiable binary operations.

In regular fully-connected and convolutional networks,
every network layer l has a full-precision kernel W l. Under
TTQ, W l is maintained, but not used during the forward
pass. Rather, W l is converted to its ternary approximation
W̃ l by bucketing W l’s individual values, W l

ijk, based on a
layer-specific threshold ∆l:

W̃ l
ijk =


Kl

1 if W l
ijk ≥ ∆l

0 if −∆l < W l
ijk < ∆l

Kl
2 if W l

ijk ≤ −∆l

This formulation is the original TTQ construction from
[8], which uses two separate scaling constants Kl

1 and Kl
2 for

the top and bottom thresholding regimes. In this work, we
explored the simplification Kl

2 = −Kl
1 (briefly discussed in

Section 6), so that the full-precision scalar factors out of the
weight matrix, reducing kernel multiplications to additions
and subtractions, substantially decreasing circuit area and la-
tency. The backward pass is also slightly modified; the gradi-
ent updates are applied to both theKL scaling values, and the
original W l shadow weights. The threshold ∆l can either be
learned, but as is used in [8] and in our experiments, we ap-
proximate ∆l = 0.05 ×max|hl|, where hl are the incoming
activations to layer-l. At validation and test-time, to avoid a
costly max-accumulation in hardware, we use a cached aver-
age value for max |hl| of the training set.

To avoid full-precision floating-point operations, we can
optionally constrain intermediate activations to 32 or 16-bit
fixed point. After the multiply-and-accumulates in every

layer, we normalize to [-1,1] (either by way of dynamic re-
scaling or batch normalization) and downscale the activations
to fit within 16-bits via bit-shifting and bit truncation.

Of particular note, in this form of constraining weights,
no multiplications are required during layer evaluation. With
weights in the set {-1,0,1}, the parallelized units in hardware
design needs to only support additions and subtractions across
each row. The fixed point multiplication withKl occurs lazily
after these activations have been computed.

4. SMALL-FOOTPRINT ARCHITECTURES

Various architectures have been proposed for the design of
small-footprint networks to extract salient speaker charac-
teristics (for identification or verification). For the purpose
of obtaining streaming results in a latency-constrained real-
world setting, most prior works use as input a sliding fixed-
length context of approximately 50 Mel-Frequency Cepstral
Coefficient (MFCC) frames. Heigold et al. propose a sim-
ple 4-layer, 500-wide fully-connected network (FCN) [18].
A similar linear FCN is used in [19] as well. Chen et al.
builds on this, proposing a 256-wide four layer network,
with the first FC layer replaced with a convolution of size
12 × 12 with stride 12 and 16 output channels [15]. [15]
also considered locally-connected layers, splitting the first
layer into four locally-connected sub-networks. Variani et al.
propose using four 256-wide max-out layers as an alternative
to fully-connected layers [14]. All architectures use ReLU
non-linearities and tuned levels of last-layer dropout.

As a candidate alternative, we draw from the Mobilenet
network used by Howard et al. for small-model real-time
mobile vision applications [11]. The key optimization is the
use of depth-separable convolution: instead of using a set of
w×h× ci convolutional kernels, depth-separable kernels use
a set of ci w × h intra-channel spatial filters followed by a
set of co 1× 1 cross-channel filters to reduce multiplications.
[2]. In our work, we introduce two depth-separable convo-
lutional (DSC) layers (Figure 1). Note that since our initial
input is single-channel (50 × 20 stacked), only the second
and third layers benefit from depth separation. Using depth-
wise separable convolution attempts, we hoped to exploit the
demonstrated modeling power of CNNs for SID (as demon-
strated by [2] in the text-independent setting), while reducing
the number of inference-time arithmetic operations.

5. COMPARING SID ARCHITECTURES

We conduct experiments on each of these proposed architec-
tures to establish a baseline. We examine the size, the num-
ber of multiply-and-accumulates (MACs), and the equal er-
ror rate of each network. We use the RSR2015 corpus (300
speakers/73 unique phrases/196844 utterances) to establish
our text-dependent closed-set speaker identification bench-
marks. The reported equal error rates (EERs) are the aver-
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Table 1: Candidate network with depthwise-separable convo-
lution (DSC) layers preceding two fully-connected layers.

age across 10 randomly selected phrases that we used to con-
duct experiments on. As input to our networks, we used 50
stacked frames of 20 MFCCs, corresponding to 20ms speech
segments after energy-based voice activity detection (VAD)
filtering. Matching the procedure in prior work, EER was
computed by comparing the cosine distance of last layer acti-
vations (‘d-vector’). All EER values are reported as the per-
cent error rate.

For fair comparison, each of the full-precision models
were sized to match in byte-size, targeting roughly 450K
parameters, the approximate original size for in the refer-
ence networks given in [14], [15], and [19]. We trained until
error convergence with a step-wise decreasing learning rate
schedule, with a maximum of 300 epochs. Reported EERs
are from a 15% testing partition, using the model checkpoint
with best validation identification accuracy. From our litera-
ture search, this is one of the first comparative text-dependent
SID benchmarks of these architectures on a non-proprietary
corpus, with code available for extension.

We compute energy estimates of each network during in-
ference of one example based on the energy/operation model
from Han et al. [3]. Our estimated energy consumption is
a lower bound on the sum of multiplication/additions costs,
SRAM costs (for storing/loading intermediate activations and
weights), and DRAM costs (for loading weights that do not
fit in the 2MB on-chip cache). Energy does not include pre-
loading the weights into SRAM/DRAM (a one time initial
cost).

Arch Size Mult EER Energy, µJ
FCN 14.52MB 452K 0.652 2325.6
LCN 14.39MB 448K 0.931 2304.6
CNN 14.58MB 2756K 0.838 2345.8

Maxout 14.56MB 453K 1.305 2329.3
DSC 14.51MB 483K 0.393 2323.9

Table 2: Performance of full-precision networks from Sec.
4. We compare average EER, floating point multiplies, esti-
mated energy consumption, and model size for different ar-
chitectures.

A summary of our results is listed in Table 2. All full-
precision architectures achieved less than 2% EER on our

closed-speaker set, text-dependent task, matching our expec-
tations from prior work. We were able to obtain consistent
results (within 1% EER) for each of the 10 unique utterances
used in our text-dependent speaker ID task. Notably, despite
improving on normal convolutions by decreasing multiplies
by 5x, our depth-separable convolution network performed
better than a standard CNN. Energy costs were dominated by
DRAM accesses, contributing to the similar energy costs.

6. PERFORMANCE OF LOW-BITWIDTH SID

We test each of these architectures after training the models
to use ternary weights and 32-bit fixed-point activations and
input. In our accounting of operations, we apply the same
transformations used in our hardware implementation. In par-
ticular, we factorize each ternary dot product into the addition
of two dot-products with binary kernels:

T l × xl = (Bl
1 ⊕ xl)×Kl

1 − (Bl
2 ⊕ xl)×Kl

2

where T l is a ternary kernel with weights∈ {Kl
1, 0,K

l
2}, xl is

the layer-l intermediate activation, and Bl
1 and Bl

2 are binary
matrices demarcating the positions of Kl

1’s and Kl
2’s in T l,

respectively. ⊕ is the binary matrix multiplication operator
(bit-wise AND and addition). This decomposition reduces en-
ergy consumption: the amortized cost of a 32-bit AND (<0.1
pJ) and the extra 32-bit addition (0.9 pJ) exceeds the cost of a
32-bit multiply (3.7 pJ) from T l × xl [3].

The alternative optimization to using separate Kl
1 and Kl

2

is to fix Kl
2 = −Kl

1, which would remove the need for this
decomposition trick. We found that with this change our net-
works were unable to learn (> 50% EER after 300 epochs),
even by sweeping learning rate schedules and various archi-
tectural changes. We also found significantly greater devia-
tion between each of the 10 unique utterances than with our
full-precision networks. Within each model class, EERs fluc-
tuated within a range of ± 3 EER between utterance types.

Arch Size Bin Op Mult EER E, µJ
FCN 907.6KB 905K 1.18K 1.337 1.235
LCN 899.4KB 896K 1.64K 39.25 1.228
CNN 911.4KB 5.51M 17.0K 2.064 1.838

Maxout 909.0KB 906K 1.41K 6.803 1.239
DSC 906.9KB 930K 5.05K DIV 1.274

Fig. 1: Performance of networks from Sec. 4 after ternariza-
tion. We compare model size, binary operation count, float-
ing point multiplies, average EER, and estimated energy con-
sumption (µJ).

By eliminating intermediate DRAM accesses, our en-
ergy costs reduce. In all our models, error rates increased
compared to their full-precision counterparts. The standard
FCN/CNN/LCN models perform the best relative to their full-
precision counterparts. The ternary LCN/DSC architectures
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Fig. 2: Visualization of the six filters in three SID CNNs.
First row: Filters from a full-precision CNN. Second row:
Filters from the corresponding TTQ network, initialized from
the first CNN. Third row: TTQ CNN filters trained from
scratch on the same dataset.

were unable to learn (diverging error [DIV], or converging to
very high error). Analysis into why these network diverged
was unsuccessful, but we noticed extremely fast convergence
to unusually small weights and gradients. Various fixed,
including adjusting the initializers, learning rates, and opti-
mizers could not correct the training problem.

We also obtained diverging networks when we tried to
initialize the ternary network’s shadow weights with the pre-
trained floating point weights. This form of weight initial-
ization was used in the original TTQ manuscript, and our ex-
periments suggest this bootstrapping is not always effective.
Instead, we initialized from other ternary networks, which
did not exhibit this problem. Six example TTQ kernels are
shown in Figure 2. While the sparsity in the bottom two rows
of kernels is roughly the same (55% and 54%), the center
TTQ CNN encountered problems in training (>90% EER),
whereas the ab initio TTQ network achieved an EER of 1.9.

7. HARDWARE DESIGN AND SIMULATION

We designed custom hardware for evaluation of our hardware-
amiable ternary networks. In particular, we targeted inference
on our FCN network, which achieved the lowest ternary EER
and multiplication count among all our tested architectures.
For implementation, we used Bluespec Verilog, and used the
in-built Bluesim simulator to test our design. Our design
comprises of the following modules:

• Processing Units (PUs) Performs the base arith-
metic logic. Each PU computes the multiply-and-
accumulates of a single row of ternary weights with
input activations. After cycles finish to compute the
MAC, scaling the cached output by either K1 or K2,
and computes the ReLU of the row’s output.

• PU Controller Coordinates feeding input and pre-
loading weights of a particular layer into the PUs.
Essentially, a large finite state machine.

• UART I/O Module Communicates input MFCCs/output
speaker ID to off-chip ARM processor that performs
input pre-processing.

• On-chip BRAM Stores intermediate activations, and
network weights. This memory has single-cycle la-
tency. The Bluespec library interface to BRAM is used.

In the taxonomy of neural network accelerators, our design
falls under a output-stationary approach: output accumulation
occurs in each PU’s local register, as input and weights are fed
in the subsequent cycles. Figure 3 describes the connectivity
of these different modules.

Fig. 3: Block diagram of the SID inference evaluator. Repli-
cated in-parallel PUs perform the core combinational logic.

The architecture we use is based on the output-stationary
reference architectures provided by Sze, et al. [4]. The key
modification is trimming down the combinational logic in the
replicated processing units to exploit our ternary weights, al-
lowing an order of magnitude fewer 32-bit multiplications
along the critical path.

We were able to successfully test our designs in simu-
lation. Excluding cycles used to read in UART frames into
BRAM, a complete example takes 1820 cycles to evaluate.
More than half the time is used to process the first FC layer
as four sequential chunks, a 256 × 1000 by 1000 multiply.
Currently, we are synthesizing the Verilog for placement on a
Xilinx Zync-7000 FPGA, so that we can perform end-to-end
tests.

8. DISCUSSION

We demonstrate a substantially smaller, hardware-amiable
text-dependent speaker identification model, using weight
ternarization. We compare various network architectures used
in prior research, and demonstrate the poor results ternariz-
ing the recent depthwise-separable architecture. We design
and test in simulation inference on our ternary networks,
demonstrating its suitability for hardware evaluation.

In future work, we intend on removing the discrete co-
sine transform (DCT) at the end of MFCC generation. While
running counter to prior work, this would preserve spatial lo-
cality of the inputs, and possibly boost performance of our
convolution-based architectures. Furthermore, we plan on
power-gating the PU’s so as to exploit the inherent sparsity
in ternary networks to further reduce power consumption.
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