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ABSTRACT

Inductive matrix completion (IMC) is a model for incorporating side
information in form of “features” of the row and column entities of
an unknown matrix in the matrix completion problem. As side in-
formation, features can substantially reduce the number of observed
entries required for reconstructing an unknown matrix from its given
entries. The IMC problem can be formulated as a low-rank matrix
recovery problem where the observed entries are seen as measure-
ments of a smaller matrix that models the interaction between the
column and row features. We take advantage of this property to
study the optimization landscape of the factorized IMC problem. In
particular, we show that the critical points of the objective function
of this problem are either global minima that correspond to the true
solution or are “escapable” saddle points. This result implies that
any minimization algorithm with guaranteed convergence to a local
minimum can be used for solving the factorized IMC problem.

Index Terms— inductive matrix completion, matrix recovery,
saddle points, local minima

1. INTRODUCTION

Matrix completion [1,2] is an important technique in machine learn-
ing with applications in areas such as recommendation systems [3]
or computer vision [4] where the task is to reconstruct a low-rank
matrix M∗ ∈ Rn1×n2 from a small number of given entries. The-
oretical results in the literature show that the number of required
samples for exact recovery is O(rn log2 n) where n = n1 + n2

and r = rank(M∗) [5, 6]. In some applications, the algorithm may
have acccess to side information that can be exploited to improve
this sample complexity. For example, in many recommendation sys-
tems the system has additional information about both user profiles
and items.

Among the many approaches to incorporate side information [7–
13], inductive matrix completion (IMC) [7, 8] models side informa-
tion as knowledge of feature spaces. This is incorporated in the
model by assuming that each entry of the unknown matrix of interest
M∗ ∈ Rn1×n2 is in form of M∗

ij = xTi W∗yj , where xi ∈ Rd1
and yj ∈ Rd2 are known feature vectors of i-th row (user) and j-th
column (item), respectively. The low-rank matrix completion prob-
lem in this case can be formulated as recovering a rank-r matrix
W∗ ∈ Rd1×d2 such that the observed entries are Mij = xTi W∗yj .
In fact, the IMC problem translates to finding missing entries of
M∗ as recovering matrix W∗ from its measurements in form of
xiW

∗yj =
〈
xiy

T
j ,W

∗〉 for (i, j) ∈ Ω.
Using this model, the sample complexity decreases considerably

if the size of matrix M is much larger than W∗. Another advan-
tage of this model is that rows/columns of the unknown matrix can
be predicted without knowing even one of their entries using the
corresponding feature vectors once we recover W∗ using the given

entries. This is not possible in standard matrix completion since a
necessary condition for completing a rank-r matrix is that at least r
entries of every row and every column are observed [1].

The nonconvex rank-r constraint makes the problem chal-
lenging. There are two main approaches in the matrix recovery
literature to impose the low-rank structure in a tractable way. The
first approach is using convex relaxations of the nonconvex rank-
constrained problem [1, 6, 14–17]. In the IMC problem, at least
O(rd log d logn) samples are required for recovery of W∗ using a
trace-norm relaxation, where d = d1 + d2 [7, 8]. The trace-norm
approach has also been proposed for the IMC problem with noisy
features where the unknown matrix is modeled as XW∗YT + N
where the residual matrix N models imperfections and noise in the
features [10].

Another approach uses matrix factorization, where the d1 × d2

matrix W is expressed as W = UVT , where U ∈ Rd1×r and
V ∈ Rd2×r [3, 18]. Jain et al. show that alternating minimiza-
tion (AM) converges to the global solution of matrix sensing and
matrix completion problems in linear time under standard condi-
tions [18]. Inspired by this result, Zhong et al. [8] show that for
the factorized IMC problem, O(r3d log dmax{r, logn}) samples
are sufficient for ε-recovery of W∗ using AM.

On the computational side, the per-iteration cost of the solvers
of the convex matrix estimation problem is high since they require
finding the SVD of a matrix in case of implementing singular value
thresholding [19] or proximal gradient methods [20], or they involve
solving a semi-definite program. On the other hand, both empirically
and theoretically, stochastic gradient descent (SGD) and AM have
been shown to find good local optima in many nonconvex matrix
estimation problems and that suitable modifications to the objective
function can find global optima [18, 21]. These simple local search
algorithms have low memory requirement and per-iteration compu-
tational cost, due to the fact that in low-rank problems r � d1, d2.
Although the IMC model reduces the dimensionality of the matrix
estimation problem from n1 × n2 to d1 × d2, the lower complexity
of the solvers of the factorized model is appealing [8].

On the theoretical side, the trace-norm based model is intriguing
in that it allows for employing well-established tools to analyze the
statistical performance of the convex program. Although the matrix
factorization based models in general are theoretically less under-
stood, recent works have studied the optimization landscape of some
of these nonconvex problems and show that their objective functions
are devoid of “poor” local minima. Problems such as matrix com-
pletion [22, 23], matrix sensing [24, 25], phase retrieval [26], deep
(linear) neural networks [27, 28] are amenable to this approach. To
the best of our knowledge, this work is the first to study the geometry
and the statistical performance of IMC under the factorized model.

This paper is motivated by the recovery guarantees of AM for
the (nonconvex) factorized IMC problem. Our key technical contri-
bution is to use concentration inequalities to show that given a suf-
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ficient number of measurements, the ensemble of sensing matrices
xiy

T
j almost preverves the energy of all rank-2r matrices, i.e. it sat-

isfies restricted isometry property of order 2r. This allows us to use
the framework of Ge et al. [22] for matrix sensing problems. Our fi-
nal result is that given at leastO(drmax{r2, log2 n}) observations,
in the (regularized) factorized IMC problem i) all local minima are
globally optimal, ii) all local minima fulfill UVT = W∗, and iii)
the saddle points are escapable in the sense that the Hessian at those
points has at least one negative eigenvalue.

Our result implies that the success of AM in the nonconvex IMC
problem is to some degree a result of the geometry of the problem
and not solely due to the properties of the algorithm. In fact, any
algorithm with guaranteed convergence to a local minimum, e.g.
SGD [21], can be used for solving the factorized IMC problem.

2. PROBLEM MODEL

Notation and Definitions. Throughout this paper, vectors and ma-
trices are, respectively, denoted by boldface lower case letters: a
and boldface upper case letters: A. We denote by Aij the j-th el-
ement of the i-th row of A. The smallest eigenvalue of A is de-
noted by λmin(A). In matrix completion, the set of indices of the
observed (given) entries of an incomplete matrix A ∈ Rn1×n2 is
denoted by Ω with size m = |Ω|. Also, AΩ denotes the linear
projection of A onto the space of n1 × n2 matrices whose entries
outside Ω are zero. The inner product of two matrices is defined as
〈A,B〉 = Tr(ATB). In a noncovex optimization problem, a poor
local minimum is a local minimum which is not globally optimum.

We repeatedly use the (matrix) restricted isometry property
(RIP) [14] and the strict saddle property [21, 29] defined below.

Definition 1. A linear operator A(·) : Rd1×d2 → Rm satisfies
r-RIP with δr RIP constant if for every W ∈ Rd1×d2 such that
rank(W ) ≤ r it holds that

(1− δr) ‖W‖2F ≤ ‖A(W)‖22 ≤ (1 + δr) ‖W‖2F .

Definition 2. A twice differentiable function f(x) is strict saddle if
λmin

(
∇2f(x)

)
< 0 at its saddle points.

Inductive Matrix Completion. Consider the nonconvex low-rank
matrix completion problem

min
M∈Rn1×n2

‖M∗
Ω −MΩ‖2F s.t. rank(M) ≤ r. (1)

In an inductive matrix completion problem, the underlying matrix
has the form M∗ = XW∗YT where the side information matrices
X ∈ Rn1×d1 and Y ∈ Rn2×d2 are known and W∗ = U∗V∗T

with U∗ ∈ Rd1×r, V∗ ∈ Rd2×r is unknown. Therefore, the prob-
lem can be written as

min
W∈Rd1×d2

∥∥∥(M∗ −XWYT
)

Ω

∥∥∥2

F
s.t. rank(W) ≤ r. (2)

This problem can be reformulated into an uncostrained nonconvex
problem by expressing W as UVT , where U ∈ Rd1×r, V ∈
Rd2×r:

min
U,V

∥∥∥(M∗ −XUVTYT )
Ω

∥∥∥2

F
+R (U,V) (3)

The regularization term R(U,V) is added to account for the invari-
ance of the asymmetric factorized model to scaling of the factor ma-
trices by reciprocal values. A common choice that suits our model is
R(U,V) = 1

4
‖UUT −VVT ‖2F [22, 25].

The objective function f(U,V) in problem (3) alternatively can
be written as∑

(i,j)∈Ω

(
M∗

ij −
〈
xiy

T
j ,UVT

〉)2

+
1

4

∥∥∥UUT −VVT
∥∥∥2

F

where xTi and yTj respectively are the ith and jth rows of X and Y.
Observe that

〈
xiy

T
j ,UVT

〉
= xTi UVTyj .

This shows that the IMC problem (3) can be thought of as a
matrix sensing problem where we are given linear measurements of
the d1 × d2 matrix W∗ by sensing matrices Aij = xiy

T
j . Define

the linear operator A such that A(W) is a vector whose elements
are the measurements 1√

m
〈Aij ,W〉.

In this paper, we make the following assumptions regarding the
side information matrices and the sampling model.

Assumption 1 (Side information). The side information matri-
ces satisfy XTX = n1Id1 and YTY = n2Id2 .1 We also make
the assumption that for any given matrices Ū and V̄ with or-
thogonal columns, the rows of the side information matrices (fea-
ture vectors) satisfy

∥∥Ūxi
∥∥2

2
≤ µr̄ and

∥∥V̄yj
∥∥2

2
≤ µr̄, where

r̄ = max(r, logn1, logn2) and µ is a positive constant. This as-
sumption, for example, is satisfied with high probability when the
side information matrices X and Y are instances generated from
a random orthonormal matrix model (the first d1 (respectively d2)
columns) and rescaled by

√
n1 (respectively

√
n2) [1, 8].

Assumption 2 (Sampling model). Indices i and j are independent
and uniformly distributed on {1, 2, . . . , n}.

3. GEOMETRIC ANALYSIS

We are interested in the geometric landscape of the objective func-
tion in the IMC problem (3). We will show that simple algorithms
like AM can recover the true underlying matrix with arbitrary ac-
curacy because given enough observations, the objective function in
this problem i) has no poor local minima, ii) has only local minima
which satisfy UVT = W∗, and iii) is strict saddle.

We employ the framework developed by Ge et al. [22] for matrix
sensing to show that the objective function of the IMC problem (3)
satisfies properties i), ii), and iii). Theorem 1 states the main result
of this paper.

Theorem 1. Consider the IMC problem (3) seen as a matrix recov-
ery problem with sensing matrices Aij = xiy

T
j for (i, j) ∈ Ω, such

that Assumptions 1 and 2 hold. Let r̄ = max{r, logn1, logn2}.
If the number of measurements is m = O

(
µ2dr2r̄

)
, then there

exists a positive constant h such that with probability higher than
1 − 2 exp (−hm), the nonconvex objective function f(U,V) has
the following properties: i) all its local minima are globally optimal
, ii) all its local minima satisfy UVT = M∗, and iii) it satisfies the
strict saddle property.

The proof strategy here is to show that at any stationary point
of f(U,V) (and its neighborhood), the “difference” ∆ between the
point and and the true solution (which is basically the Euclidian dis-
tance between the point and its nearest global minimum) is a descent
direction. This means that (U,V) cannot be local minimum unless
∆ = 0 (no poor local minima and exact recovery) and that the

1This is not a restrictive assumption since we can apply orthonormaliza-
tion methods such as Gram-Schmidt process [30] and then rescale to ensure
this assumption is satisfied.

2227



Hessian at the saddle points cannot be positive semidefinite (strict
saddle property). To this end, following the proposed strategy by

Ge, Jin, and Zheng [22], we construct B =

(
U
V

)
∈ R(d1+d2)×r ,

W = UVT , and N = BBT and reformulate problem (3) as the
positive semidefinite (PSD) low-rank matrix recovery problem

min
B

f(B) = ‖T (N∗)− T (BBT )‖22. (4)

where B∗ =

(
U∗

V∗

)
, N∗ = B∗B∗T , and T is a linear operator

such that T (N) is an ensemble of m measurements 〈Tij ,N〉 such
that 〈Tij ,N〉2 = 1

m

(
4 〈Aij ,W〉2 + ‖UUT −VVT ‖2F

)
. The

following definition captures the invariance of the solution of sym-
metric matrix recovery to rotation, negation, or column permutation.

Definition 3. Given matrices B,B∗, define their difference ∆ =
B−B∗D, where D = argmin

Z:ZZT =ZTZ=I2r

‖B−B∗Z‖2F .

The second order term in the Taylor expansion of f(B) becomes
dominant in the neighborhood of stationary points. Therefore it suf-
fices to show that δT∇2f(B)δ, where δ = vec(∆), is strictly neg-
ative for points in these regions, except when ∆ = 0, to prove that
∆ is a descent direction. Theorem 2 states that if linear operator
B is RIP, then we can show δT∇2f(B)δ is strictly negative in the
neighborhood of stationary points unless they correspond to N∗ (and
its submatrix W∗) and consequently M∗ = XW∗YT , the ground
truth matrix in problem (3).

Theorem 2. Consider the objective function of the PSD matrix
recovery problem (4). If the measurement operator T satisfies
(2r, δ2r)-RIP, then any point satisfying ‖∇f(B)‖F ≤ ξ, the
quadratic form δT∇2f(B)δ for δ = vec(∆) defined above is
negative unless ‖∆‖F ≤ Kξ/ (1− 5δ2r) for some positive con-
stant K.

Proof sketch. The proof is based on the following equality (Lemma
7 in [22]):

δT∇2f(B)δ =
∥∥∥T (∆∆T

)∥∥∥2

2
− 3 ‖T (N−N∗)‖22

+ 4 〈∇f(B),∆〉 . (5)

Using the RIP property of T , which implies that the measuring op-
erator captures the energy of the observed matrix with small devi-
ation, and applying the bounds

∥∥∆∆T
∥∥2

F
≤ 2 ‖N−N∗‖2F and

k ‖∆‖2F ≤ ‖N−N∗‖2F (Lemma 6 in [22]) results in

δT∇2f(B)δ ≤ −k (1− 5δ2r) ‖∆‖2F + 4ξ ‖∆‖F . (6)

Therefore the bilinear form on the left cannot be nonnegative unless
‖∆‖2F ≤ 4ξ/ (k (1− 5δ2r)).

Now, we show that the linear operator A and consequently T
are 2r-RIP. Note that it is important that we show 2r-RIP rather that
r-RIP because in Theorem 2, T is applied to B−B∗ which can be
of rank at most 2r. It also guarantees that the null space of T does
not include any matrices of rank 2r or less, which is a necessary and
sufficient condition for unique recovery [31, 32].

Theorem 3. Consider the IMC problem (3) seen as a matrix recov-
ery problem with sensing matrices Aij = xiy

T
j for (i, j) ∈ Ω,

such that Assumptions 1 and 2 hold. If the number of measurements
m = O

(
µ2dr̄2r log(36

√
2/δ)/δ2

)
, then there exists a positive con-

stant h such that with probability higher than 1 − 2 exp (−hm),
the linear operator A(·), seen as an ensemble of m measurements

1√
m
〈Aij , ·〉, is 2r-RIP with RIP constant δ2r = 2δ.

Proof. We show that
∥∥A(W̃)

∥∥2

2
is close to

∥∥W̃∥∥2

F
for all rank-2r

matrices W̃, i.e.,
∣∣∥∥A(W̃)

∥∥2

2
−
∥∥W̃∥∥2

F

∣∣ ≤ δ2r
∥∥W̃∥∥2

F
. We use

Bernstein’s inequality to find a bound on the deviation of the sum of
m random variables 1√

m

〈
xiy

T
j ,W̃

〉
from their mean

∥∥W̃∥∥2

F
for a

given rank-2r matrix W̃. This is formally stated in Lemma 1. Then
we find a similar bound for all rank-2r (or less) matrices.

Lemma 1. Consider the same setting as Theorem 3. For a given
matrix W̃ of rank 2r, with probability at least 1 − C exp (−cm),
for some positive constatnts C and c, we have

(1− δ2r)
∥∥W̃∥∥2

F
≤
∥∥A(W̃)∥∥2

2
≤ (1 + δ2r)

∥∥W̃∥∥2

F
.

Proof of Lemma 1. In order to show that the average random mea-
surement ‖A

(
W̃
)
‖22 = 1

m

∑
ij〈Aij ,W̃〉2 is close to its expecta-

tion ‖W̃‖2F , we use Bernstein’s inequality [33]:

P
(∣∣Z̄ − ηZ∣∣ > ε

)
≤ 2 exp

( −mε2/2
1
m

∑
ij Var(Zij) +BZε/3

)
,

where Z̄ = 1
m

∑
ij Zij and ηZ is the mean of the random variables.

To apply Bernstein’s inequality, we need to find the expectation, the
variance (or an upper bound on the variance), and an upper bound
on the absolute value of the random variables in the summand, de-
noted by Zij = xTi W̃yjy

T
j W̃xi. Note that X and Y are known

orthogonal matrices and the only source of randomness is the choice
of (i, j). First, we find the mean of the random variables:

ηZ = E
[
xTi W̃yjy

T
j W̃xi

]
= E

[
eTi XŨṼ

T
YT eje

T
j YW̃TXT ei

]
= E

[
Tr
(
ṼTYT eje

T
j YW̃TXT eie

T
i XŨ

)]
= Tr

(
ṼTYTE

[
eje

T
j

]
YW̃TXTE

[
eie

T
i

]
XŨ

)
(a)
= Tr

(
ṼTYTYW̃TXTXŨ

)
(b)
= Tr

(
ṼTW̃T Ũ

)
= Tr

(
ŨṼT · W̃T )

=
∥∥W̃∥∥2

F
, (7)

where W̃ = ŨṼT , equality (a) follows from E
[
eie

T
i

]
= 1

n1
In1

and (b) follows from Assumption 1. Next we find an upper bound
BZ on |Zij |:

|Zij | = ·xTi ÛΣ̂V̂
T
yj · yTj ÛΣ̂V̂

T
xi

≤
(∥∥∥xTi Û

∥∥∥
2

∥∥∥Σ̂∥∥∥
2

∥∥∥V̂Tyj

∥∥∥
2

)2

= σ2
1

∥∥∥V̂Tyj

∥∥∥2

2
·
∥∥∥ÛTxi

∥∥∥2

2

≤ r̄2µ2σ2
1 , (8)
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where ÛΣ̂V̂
T

is the SVD of W̃, σ1 = ‖W̃‖2, and the last in-
equality follows from Assumption 1. Finally, for the variance of the
random variables we have

1

m

∑
ij

Var(Zij) ≤
1

m

∑
ij

E
[
Z2
ij

]
(a)

≤ 1

m
Bz
∑
ij

E [Zij ]

≤ r̄2µ2σ2
1‖W̃‖2F , (9)

where inequality (a) is due to the fact that Zij’s are nonnegative
random variables. Using Bernstein’s inequality we get the following.

P
(∣∣‖A(W̃)‖22 − ‖W̃‖2F

∣∣∣ > ε
)

≤ 2 exp
(
− mε2/2

r̄2µ2σ2
1‖W̃‖2F + r̄2µ2σ2

1ε/3

)
. (10)

Set ε = δ ‖W‖2F . We have

P
(∣∣‖A(W̃)‖22−‖W̃‖2F

∣∣ > δ‖W̃‖2F
)

≤ 2 exp
(
− mδ2‖W̃‖2F /2
r̄2µ2σ2

1(1 + δ/3)

)
≤ 2 exp

(
− mδ2/2

µ2r̄2(1 + δ/3)

)
. (11)

Set δ =

√
4µ2r̄2 log(2/ρ)

m
. If m > 4µ2r̄2 log(2/ρ) we have δ < 1.

Therefore,

P
(∣∣∣‖A(W̃)‖22 − ‖W̃‖2F

∣∣∣ > δ‖W̃‖2F
)
≤ 2 exp

(
− mδ2

4µ2r̄2

)
.

This concludes the proof of Lemma 1.

Now we return to the proof of Theorem 3. The rest of the proof
is based on Theorem 2.3 in [34]. We showed in Lemma 1 that for a
given matrix of rank at most 2r,

P
(∣∣∣‖A(W̃)‖22 − ‖W̃‖2F

∣∣∣ > δ‖W̃‖2F
)
≤ C exp(cm),

for positive constants C and c. In order to extend the result such that
a similar result holds for all rank-2r (or less) matrices, we use the
union bound for an ε-net [35] of the space of such matrices with unit
Frobenius norm. For the set Sd2r = {W̃ ∈ Rd×d : rank(W̃) ≤
2r,
∥∥∥W̃∥∥∥

F
= 1}, there exists an ε′-net S̄d2r ⊂ Sd2r such that |S̄d2r| ≤

(9/ε′)(2d+1)2r [31,34]. It follows from 12 and the union bound that

P
(

max
¯̃
W∈S̄d2r

∣∣∣ ∥∥∥A(W̃)∥∥∥2

2
− 1
∣∣∣ > δ

)
≤ |Ŝd2r|C exp(−cm).

Setting ε′ = δ/(4
√

2) results in

P
(

max
¯̃
W∈S̄d2r

∣∣∣ ∥∥∥A(W̃)∥∥∥2

2
− 1
∣∣∣ > δ

)
≤ C exp

(
(2d+ 1)2r log(36

√
2/δ)− cm

)
= C exp

(
c′dr − cm

)
≤ C exp (−hm) (12)

where c′ = 6 log(36
√

2/δ) and h = c − c′/(K). We need m >
Kdr so that the last inequality above holds, and we need K > c′/c
so that h becomes positive. This means that m > c′dr/c. Plugging
in the values for C, c, and c′, we get that if with probability at least
1− 2 exp (−hm),

max
¯̃
W∈S̄d2r

∣∣∣ ∥∥∥A(W̃)∥∥∥2

2
− 1
∣∣∣ ≤ δ.

It follows from this bound that for all W̃ of rank at most 2r that with
probability at least 1− 2 exp (−hm) [34],

1− 2δ ≤
∥∥∥A( W̃

‖W̃‖2F

)∥∥∥2

2
≤ 1 + 2δ.

Since A is a linear operator, for all W̃ with rank(W̃) ≤ 2r,

(1− 2δ) ‖W̃‖2F ≤ ‖A
(
W̃
)
‖22 ≤ (1 + 2δ) ‖W̃‖2F .

This result means that A is 2r-RIP with δ2r = 2δ when m =
O
(
µ2dr̄2r log(36

√
2/δ)/δ2

)
.

Finally, we show that the sensing operator T is RIP on (d1 +
d2) × (d1 + d2) PSD matrices of rank at most 2r. Any of these

PSD matrices can be written in form of N =

(
ŨŨT ŨṼT

ṼT Ũ ṼṼT

)
where Ũ ∈ Rd1×2r and Ṽ ∈ Rd2×2r . We defined T such that
T (N) = 4A(ŨṼT ) +

∥∥ŨŨT
∥∥2

F
+
∥∥ṼṼT

∥∥2

F
− 2
∥∥W̃∥∥2

F
where

W̃ = ŨṼT . Because ‖N‖2F =
∥∥UUT

∥∥2

F
+
∥∥VVT

∥∥2

F
+2
∥∥W̃∥∥2

F
,

if

(1− δ)
∥∥W̃∥∥2

F
≤
∥∥A(W̃)

∥∥2

2
−
∥∥W̃∥∥2

F
≤ (1 + δ)

∥∥W̃∥∥2

F
,

then

(1− 2δ)
∥∥N∥∥2

F
≤
∥∥T (N)

∥∥2

2
−
∥∥N∥∥2

F
≤ (1 + 2δ)

∥∥N∥∥2

F
.

Note that the deduction of the RIP of T from the RIP ofA is thanks
to the choice of the regularizer in (3).

4. CONCLUSION

In this paper, we discussed the geometric landscape of the inductive
matrix completion (IMC) problem. The IMC model incorporates
the side information in form of features of the row and column en-
tities (xi’s and yj’s) and can be formulated as a low-rank matrix
recovery problem where each observed entry of M∗ = XW∗Y is
seen as a measurement of W∗, that is M∗

ij = xTi W∗yj . Moti-
vated by the recovery guarantees of local search algorithms like AM
for the factorized IMC problem [8], we study the optimization land-
scape of the factorized IMC problem. Using a framework developed
by Ge et al. [22] for matrix sensing problems, we show that, given
O(max{r2, log2 n}rd) observations, for the (regularized) factor-
ized IMC problem i) there are no poor local minima, ii) the global
minima satisfy UVT = W∗, iii) The Hessian at the saddle point
has at least one negative eigenvalue.

This result shows that the recovery guarantees of AM in the IMC
problem is not merely due to the algorithm and the geometry of the
problem plays an important role. In fact, any algorithm, such as
SGD, that can efficiently escape saddle points and find a local mini-
mum can be used for solving the factorized IMC problem.
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