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ABSTRACT

Non-negative Matrix Factorization (NMF) is a popular model
in machine learning, which can learn parts-based representa-
tion by seeking for two non-negative matrices whose product
can best approximate the original matrix. However, the man-
ifold structure is not considered by NMF and many of the ex-
isting work use the graph Laplacian to ensure the smoothness
of the learned representation coefficients on the data mani-
fold. Further, beyond smoothness, it is suggested by recent
theoretical work that we should ensure second order smooth-
ness for the NMF mapping, which measures the linearity of
the NMF mapping along the data manifold. Based on the e-
quivalence between the gradient field of a linear function and
a parallel vector field, we propose to find the NMF mapping
which minimizes the approximation error, and simultaneous-
ly requires its gradient field to be as parallel as possible. The
continuous objective function on the manifold can be dis-
cretized and optimized under the general NMF framework.
Extensive experimental results suggest that the proposed par-
allel field regularized NMF provides a better data representa-
tion and achieves higher accuracy in image clustering.

Index Terms— Non-negative matrix factorization, Vector
field, Image representation, Clustering

1. INTRODUCTION

Matrix factorization is a class of effective methods to learn da-
ta representation. Among existing matrix factorization meth-
ods such as LU-decomposition, QR-decomposition, Cholesky
decomposition, and Singular Value Decomposition (SVD),
the Non-negative Matrix Factorization (NMF) is an very pop-
ular one which can learn parts of objects like human faces
and text documents [1, 2]. Though the parts-based represen-
tation have got physiological evidence from previous studies
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[3] and shown great performance in face recognition [4] and
document clustering [5], NMF fails to consider the geomet-
rical structure of the data space which has been proven to be
essential for data clustering and classification. To compensate
the limitation, Cai et al. proposed to encode the geometrical
information of the data space by constructing a nearest neigh-
bor graph and formulated the Graph regularized Non-negative
Matrix Factorization (GNMF) model [6, 7], which shows su-
perior performance to NMF. However, such graph Laplacian-
based method only enforces the smoothness of data represen-
tation on data manifold in first order manner. Based on the
conclusions that 1) the second smoothness measures the lin-
earity of the mapping function, 2) the gradient field of a linear
function has to be a parallel vector field, which were shown
in [8, 9], we propose a novel matrix factorization algorithm,
called Parallel Field Regularized NMF (PFNMF), which en-
forces the learned codes to vary linearly along the data mani-
fold. Specifically, we firstly estimate parallel vector fields on
manifold from data samples, and then learn the codes by re-
quiring the gradient fields of NMF mapping are as close to the
estimated parallel fields as possible.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the formulation of the proposed PFNMF
model and its optimization. Experimental setting and results
are presented in Section 3. Section 4 concludes the paper.

2. PARALLEL FIELD REGULARIZED NMF

2.1. NMF

NMF is a matrix factorization algorithm that focuses on anal-
ysis of data matrices whose elements are non-negative. Giv-
en a data matrix X = [x1, · · · , xn] ∈ Rm×n, NMF aims at
finding two non-negative matrices U = [uik] ∈ Rm×K and
H = [hjk] ∈ Rn×K , whose product can approximate X .
Based on the square of the Euclidean distance between two
matrices, the objective function of NMF can be formulated as

ONMF = ∥X − UHT ∥2. (1)
TheK columns of U are basis vectors, and each column ofH
is an encoding of a sample vector in X and is an one-to-one
mapping. The non-negative property enforced on both U and
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H allows only addictive combinations among different bases,
which makes NMF learn parts-based representation.

2.2. Parallel Fields and Linear Functions

In geometry and vector calculus, a vector field is a mapping
from a manifoldM to tangent spaces [10]. As shown in [8],
the parallel vector field has close relationship to a linear func-
tion on the manifold, which can be described below.

Definition 1. (Parallel Field [10]). A vector fieldX on mani-
foldM is a parallel field if∇X ≡ 0, where∇ is the covariant
derivative onM.

Definition 2. (Linear Function [10]). A continuous function
f :M→ R is said to be linear if (f ◦ γ)(t) = f(γ(0)) + ct
for each geodesic γ.

In this paper, a function f is linear means that it varies
linearly along the geodesics of the manifold. This definition
is a natural extension of linear functions on Euclidean space.
The following proposition reveals the relationship between a
parallel vector field and a linear function on the data mani-
fold. We will not strictly distinguish between the concepts of
covariant derivative and gradient field in this paper.

Proposition 1. [10] Let V be a parallel field on the manifold.
If it is also a gradient field for function f , V = ∇f , then f is
a linear function on the manifold.

2.3. PFNMF Model Formulation

As discussed before, we aim to ensure the linearity of NM-
F embedding with respect to the data manifold, which is e-
quivalent to the parallelism of the gradient field of the NMF
mapping. However, it is difficult to design constraints on the
gradient field of a mapping function directly [8]. Therefore,
we propose to 1) learn vector fields on manifold from data
samples to approximate the gradient field of the NMF map-
ping function, and encourage the vector fields to be as parallel
as possible; 2) learn NMF embedding while enforcing the en-
codes to be as close to the estimated parallel fields as possible.

Since the manifoldM is unknown, the mapping function
in NMF fk(xj) = hjk , f

(k)
j , j = 1, . . . , n has no explicit

form. Following [8], we introduce how to estimate the tan-
gent space of each data point, which is important for discretiz-
ing the continuous objective function form when estimating
parallel vector fields and learning NMF embedding.

Let W be the corresponding affinity matrix of graph G
and W is simply defined by 0-1 weight. Then, for each xi,
we can estimate its tangent space TxiM by performing P-
CA on its local neighborhood. We choose the eigenvectors
corresponding to the d largest eigenvalues since TxiM is d-
dimensional. Let Ti ∈ Rm×d be the matrix whose columns
constitute an orthogonal basis for TxiM. It is easy to show
that Pi = TiT

T
i is the unique orthogonal projection from Rm

onto the tangent space TxiM. That is, for any vector a ∈ Rm,
we have Pia ∈ TxiM and (a− Pia) ⊥ Pia.

Estimating the Parallel Vector Field. Firstly, we try to
find vector fields which are as parallel as possible on the man-
ifold. Let V be a smooth vector field onM. By definition, the
covariant derivative of V should be zero. That is, ∇V ≡ 0.
Naturally, the objective for estimating parallel vector field is

E(V ) =

∫
M
∥∇V ∥2HSdx, (2)

where ∥ · ∥HS denotes Hilbert-Schmidt tensor norm [11].
For each point xi, let Vxi denote the value of the vector

field V at xi, and ∇V |xi denote the value of ∇V at xi. Ac-
cording to its definition, Vxi

should be a vector in the tangent
space TxiM. Therefore, it can be represented by the local
coordinates of the tangent space, Vxi

= Tivi, where vi ∈ Rd.
By discretizing (2), the parallel field V can be obtained by

solving the following optimization problem (Here we use the
notation V instead of V while the specific definition of V will
be given next.):

min
V

E(V) =
∑n

i=1
∥∇V |xi∥2HS. (3)

Then according to the analysis in [8], the optimization prob-
lem of (3) reduces to

min
V

E(V) =
∑n

i,j=1
wij∥PiTjvj − Tivi∥2. (4)

The compact form of E(V) is E(V) , VTBV if we define
Qij = TT

i Tj , V = [vT1 , v
T
2 , · · · , vTn ]T ∈ Rdn and

B =

 B11 · · · B1n

...
. . .

...
Bn1 · · · Bnn

 , (5)

where B is a dn × dn sparse block matrix. If we index each
d× d block by Bij , then for j = 1, 2, . . . , n, we have

Bjj =
∑

xi∈Nk(xj)
wij(QijQ

T
ij + Id), (6)

Bij =

{
−2wijQij , if xi ∼ xj
0, otherwise. (7)

Obviously, V is a dn-dimensional big column vector concate-
nating all the vi’s.

We impose a global normalization constraint ∥V∥2 = 1
on vector field; thus, the Lagrangian function w.r.t. E(V) is

LE(V) = E(V)− λ
(
VTV− 1

)
. (8)

The parallel vector field V can be estimated by solving the
following eigenvalue decomposition problem

BV = λV. (9)
The multiple vector fields are eigenvectors corresponding to
the smallest eigenvalues of the matrix B. Specifically, the
dimensionality of learned NMF embedding is K; thus, we
use Ṽ ∈ Rdn×K to denote the stack of K eigenvectors.

Learning NMF Embedding. Once the parallel vector
fields Vi are obtained, the embedding functions f (k) :M→
R can be constructed by requiring their gradient fields to be
as close as Vi as possible. This can be attained in the least
square sense and thus minimizing the following objective

R(f (k)) =

∫
M
∥∇f (k) − V ∥2dx (10)
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Based on the analysis in [8], R(f (k)) can be discretized as
R(f (k)) =

∑n

i,j=1
wij((xj−xi)2Tivi−f (k)j +f

(k)
i )2. (11)

By incorporating this as a regularizer into the objective of
NMF, we obtain the objective of PFNMF as

OPFNMF = ∥X − UHT ∥2 + α
∑

k
R(f (k)) (12)

Let L be the graph Laplacian. Then we have
R(f (k)) =2f (k)TLf (k) +

∑n

i,j=1
wij

(
(xj − xi)2Tivi

)2
− 2

∑n

i,j=1
wij(xj − xi)TTivisTijf (k),

where sij ∈ Rn is a selection vector of all zero elements
except for the i-th element being -1 and the j-th element being
1. We further construct a dn × dn block diagonal matrix G,
and a dn×n block matrix C = [CT

1 , C
T
2 , . . . , C

T
n ]

T . Let Gii

denote the i-th d× d diagonal block of G, and Ci denote the
i-th d× n block of C, we define:

Gii =
∑n

j∼i
wijT

T
i (xj − xi)(xj − xi)TTi

Ci =
∑n

j∼i
wijT

T
i (xj − xi)sTij

(13)

With simple algebra transformations, it is easy to check that
R(f (k)) can be rewritten as follows:

R(f (k)) = 2f (k)TLf (k) + VTGV− 2VTCf (k). (14)
Similar to the basic NMF, we need to minimize OPFNMF

by updating one variable while fixing the other.
Let ψik and ϕjk be the Lagrange multipliers for con-

straints uik ≥ 0 and hjk ≥ 0. We define matrix Ψ = [ψik]
and Φ = [ϕjk], then the Lagrangian function LPFNMF is

LPFNMF = OPFNMF +Tr
(
ΨUT

)
+Tr

(
ΦHT

)
(15)

Fixing H , the partial derivative of LPFNMF w.r.t. U is:
∂LPFNMF

∂U
= −2

(
X − UHT

)
H +Ψ.

Using the KKT condition ψikuik = 0, we can get
− (XH)ik uik +

(
UHTH

)
ik
uik = 0,

which leads to the following updating rule for uik
uik ← uik(XH)ik/(UH

TH)ik. (16)
Based on the NMF definition, the mapping function F =[

f (1), f (2), · · · , f (K)
]
∈ Rn×K is defined as f (k) = h·k ∈

Rn×1, f
(k)
j = hjk and thus we have

∂LPFNMF

∂H
= −2

(
X − UHT

)
U + α

∂R

∂F
+Φ

= −2XTU + 2HUTU + 4αLH − 2αCT Ṽ+Φ
Using KKT conditions ϕjkhjk = 0, we have
−(XTU)jkhjk + (HUTU)jkhjk + 2α(LH)jkhjk

− α(CT Ṽ)jkhjk = 0.
Since NMF only allows additive combinations, we decom-
pose L and V as L = D −W and Ṽ = Ṽ+ − Ṽ−, Ṽ+ =
(|Ṽ| + Ṽ)/2, Ṽ− = (|Ṽ| − Ṽ)/2, then we obtain the follow-
ing updating rule for hjk:

hjk ← hjk
(XTU + αCT Ṽ+ + 2αWH)jk

(HUTU + αCT Ṽ− + 2αDH)jk
(17)

We can easily find that PFNMF will boil down to NMF when
α=0 and GNMF [7] if we do not consider the vector fields Ṽ.

The workflow of PFNMF is summarized in Algorithm 1.

Algorithm 1 PFNMF
Input: Data samples X = (x1, x2, . . . , xn) ∈ Rm×n and α;
Output: The basis matrix U and coefficient matrix H .

for i = 1 to n do
Compute tangent spaces TxiM for each data sample by
performing PCA on neighborhood of xi;

end for
Construct matrix B according to (7);
Do eigen-decomposition on (9) to estimate Ṽ;
// Iteratively optimize PFNMF model
while not converged do

Update U according to (16) with H fixed;
Update H according to (17) with U fixed;

end while

3. EXPERIMENTS

We investigate the effectiveness of PFNMF on image cluster-
ing. We set the parameter K to be the number of clusters and
use the obtained coefficient matrix H to determine the cluster
label of each data point. α is searched from 2−10:10.

3.1. Data Sets and Experimental Settings

Data Sets. Three data sets are used in this experiment. The
important statistics of these data sets are summarized below
(see also Table 1). COIL20. It contains 20 objects. The im-
ages of each object were taken 5 degrees apart as the object is
rotated on a turntable and each object has 72 images. The size
of each image is 32×32 pixels, with 256 gray levels per pixel.
Thus, each image is represented by a 1024-dimensional vec-
tor. ORL. There are ten different images of each of 40 distinct
subjects. All the images were taken against a dark homoge-
neous background with the subjects in an upright, frontal po-
sition. We crop the original 112×92 images into 64×64 gray
scale images. CMU PIE. It contains 32×32 gray scale im-
ages of 68 subjects. Each person has 42 facial images under
different light and illumination conditions.

Evaluation Metrics. The clustering result is evaluated by
comparing the obtained label of each sample with the label
provided by the data set. Two standard clustering metrics, the
accuracy (ACC) and normalized mutual information (NMI),
are used to measure the clustering performance.

Table 1. Properties of the used data sets.
dataset #size #dimensionality #class

COIL20 1440 1024 20
ORL 400 4096 40
PIE 2856 1024 68

3.2. Clustering Results

To show the improvement of the clustering performance by
our method, we compared PFNMF with the following three
popular algorithms: K-means, NMF [1], and GNMF [7]. The
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evaluations were conducted with different numbers of clus-
ters. For each given cluster numbers, 20 test runs were con-
ducted on different randomly chosen clusters. The final per-
formance is recorded by averaging the performance of the 20
tests. For fair comparison, we record the randomly selected
cluster indices, and fix them for all competing algorithms.

Table 2. Clustering performance on COIL20.

K
Accuracy (mean±std-dev%)

Kmeans NMF GNMF PFNMF
4 84.11±12.15 79.77±14.26 92.73±11.98 95.97±8.74
6 78.07±12.16 75.53±11.87 86.66±12.67 92.82±8.20
8 72.96±10.23 72.06±9.64 90.43±7.75 95.29±6.48
10 68.87±6.17 68.89±8.88 81.41±7.58 87.44±6.51
12 68.20±4.02 67.87±5.45 79.13±5.96 86.17±5.32
14 67.11±5.65 66.67±4.60 82.49±4.61 84.67±4.09
16 65.23±4.42 65.56±4.69 79.09±4.10 80.90±3.72
18 62.74±3.85 63.15±3.65 78.97±3.49 80.41±4.29
20 60.49 58.33 80.69 85.14

Avg. 69.75 68.65 83.51 87.65

K
Normalized Mutual Information (mean±std-dev%)

Kmeans NMF GNMF PFNMF
4 75.03±16.69 70.75±17.67 90.32±13.14 94.55±10.96
6 74.83±12.79 71.99±11.91 87.91±8.84 92.54±7.75
8 74.23±7.65 72.02±7.57 91.29±5.72 95.36±5.23
10 72.68±5.95 71.72±7.49 86.80±5.07 90.41±4.68
12 73.22±3.25 72.36±3.95 86.83±3.43 90.85±3.41
14 74.19±3.93 72.92±3.75 89.29±2.80 91.33±2.51
16 73.88±2.71 72.61±3.38 88.36±2.10 89.73±2.58
18 73.25±2.54 72.28±2.41 88.36±1.57 89.50±1.61
20 73.86 71.51 89.12 90.50

Avg. 73.91 72.02 88.70 91.64

Table 3. Clustering performance on ORL.

K
Accuracy (mean±std-dev%)

Kmeans NMF GNMF PFNMF
2 90.25±14.46 89.25±12.38 93.00±12.71 93.25±11.62
4 80.37±11.51 68.75±9.58 81.38±11.11 85.00±8.51
8 66.68±8.74 67.06±7.18 70.56±7.28 72.63±10.14
12 62.58±6.58 63.50±6.81 68.42±7.26 69.67±6.51
16 59.94±5.91 59.53±4.67 64.63±6.11 67.69±5.18
20 57.30±4.92 54.75±4.99 62.47±4.05 65.45±5.65
25 56.18±4.04 53.98±4.29 61.38±3.25 65.10±4.15
30 55.63±3.33 52.23±3.29 59.33±2.91 61.83±3.34
40 53.50 49.75 59.75 62.25

Avg. 64.71 62.09 68.99 71.46

K
Normalized Mutual Information (mean±std-dev%)

Kmeans NMF GNMF PFNMF
2 71.86±37.30 65.61±36.27 78.85±35.24 78.87±32.65
4 75.17±13.04 69.20±11.23 74.17±14.14 77.62±11.41
8 70.97±7.31 69.86±6.91 72.94±7.25 75.37±7.78
12 71.94±5.16 71.79±5.28 75.50±4.63 76.99±5.13
16 70.45±4.68 70.01±3.80 73.48±4.62 76.04±3.93
20 70.59±3.86 68.55±3.17 74.76±3.01 76.99±3.54
25 71.13±2.88 69.50±2.82 74.62±2.16 77.50±2.79
30 71.33±2.05 69.98±2.65 74.20±1.99 76.01±2.11
40 71.42 68.92 75.70 78.23

Avg. 71.65 68.09 74.91 77.07

Table 2, 3 and 4 show the clustering results on the data
sets COIL20, ORL and PIE. The best results are shown in
boldface. From these tables, we can find PFNMF consistently

Table 4. Clustering performance on PIE.

K
Accuracy (mean±std-dev%)

Kmeans NMF GNMF PFNMF
10 31.15±4.00 56.62±5.16 85.01±9.28 91.39±7.38
20 27.20±1.99 55.32±4.46 80.69±6.20 83.72±5.64
30 26.35±1.29 55.87±2.18 81.60±3.08 84.19±3.51
40 25.34±1.31 55.96±3.37 77.51±3.84 79.81±3.18
50 24.62±1.08 55.27±2.10 76.59±3.90 78.83±4.41
60 24.17±1.10 55.64±2.42 74.69±2.89 76.34±3.29
68 24.54 56.79 70.52 73.01

Avg. 26.20 55.92 78.09 81.04

K
Normalized Mutual Information (mean±std-dev%)

Kmeans NMF GNMF PFNMF
10 37.75±6.40 66.22±2.88 89.53±5.28 91.16±4.23
20 44.24±2.30 72.77±2.88 88.85±2.86 90.73±3.10
30 48.19±2.05 76.47±1.04 89.85±1.25 91.12±1.81
40 50.08±1.68 78.20±1.34 88.86±1.53 90.87±1.57
50 51.33±1.40 78.75±0.85 88.67±1.46 90.54±1.35
60 52.67±1.21 80.36±0.99 88.36±0.92 90.18±1.17
68 53.77 80.18 87.21 89.96

Avg. 48.29 76.14 88.76 90.65

outperforms its counterpart GNMF by around 2%-3%, which
means that the data representation learned by PFNMF show
more respect to the underlying data manifold. The linearity
of image data representation emphasized by the second order
smoothness is beneficial to clustering task.

3.3. Basis Vectors and Image Encodings

In this test, we randomly select 25 subjects from the ORL
data set and for each subject we randomly select 5 face im-
ages. Figure 1 shows the basis vectors respectively learned
by NMF and PFNMF. Comparing the basis images obtained
by PFNMF with the original face images. The basis learned
by PFNMF is obviously much clear than that learned by N-
MF, which will naturally lead to better face image encodings
for clustering.

(a) Original images. (b) Basis by NMF. (c) Basis by PFNMF.

Fig. 1. Basis vectors learned from the ORL data set.. Large
values are illustrated with white pixels.

4. CONCLUSIONS

We have presented a novel method for matrix factorization al-
gorithm to enforce the second order smoothness of data rep-
resentation called PFNMF. Experiments shows that our pro-
posed method performs better than other comparison methods
in image clustering. In the future, we will extend our method
to deal with data in noisy environments and thus develop its
robust version.
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