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ABSTRACT

Differential privacy is a cryptographically-motivated formal
privacy definition that is robust against strong adversaries. The
principal component analysis (PCA) algorithm is frequently
used in signal processing, machine learning, and statistics
pipelines. In many scenarios, private or sensitive data is dis-
tributed across different sites: in this paper we propose a differ-
entially private distributed PCA scheme to enable collaborative
dimensionality reduction. We investigate the performance of
the proposed algorithm on synthetic and real datasets and show
empirically that our algorithm can reach the same level of util-
ity as the non-private PCA for some parameter choices, which
indicates that it is possible to have meaningful utility while
preserving privacy.

Index Terms— principal component analysis, differential
privacy, distributed algorithm

1. INTRODUCTION

Many machine learning and data analytics procedures involve
private or sensitive data. The outputs of these algorithms can
leak information which may allow potentially harmful infer-
ences about individuals. To protect against such privacy vio-
lations, a privacy measure – differential privacy (DP), has be-
come a popular approach during the last decade. Differential
privacy [1] measures privacy risk in terms of the probability of
identifying individual data points in a dataset from the results
of computations (algorithms) performed on that data.

In many modern applications the data is distributed over
different sites. Naturally, the number of samples held locally is
small. However, most statistical estimation procedures tend to
be more accurate when the number of samples is large. There-
fore, we would like to exploit the data samples available across
all locations/sites to estimate the desired population parameter.
Note that sending the samples to a central aggregator would cer-
tainly raise privacy and communication cost concerns. To that
end, we propose an algorithm to perform principal component
analysis (PCA) on distributed data while satisfying differential
privacy. PCA, or singular value decomposition (SVD), is one
of the most widely-used stages in machine learning algorithms.
SVD or PCA is used for preprocessing high-dimensional data
by projecting it onto a lower dimensional subspace spanned by
the singular vectors of the second-moment matrix of the data.
For example, training a classifier is much faster when the data
is first projected onto lower dimensions.
Related works. Several distributed PCA algorithms have been
proposed [2–6] in the literature. Liang et al. [2] proposed a
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distributed PCA scheme where it is necessary to send both the
left and right singular vectors along with corresponding singu-
lar values from each site to the aggregator. Feldman et al. [7]
proposed an improvement upon this, where the sites send a
D×Rmatrix to the aggregator. Balcan et al. [3] proposed a fur-
ther improved version using fast sparse subspace embedding [8]
and randomized SVD [9]. However, none of these algorithms
guarantee any privacy. A privacy-preserving distributed diffu-
sion LMS algorithm was proposed in [10]. Additionally, DP
stochastic gradient descent algorithms were proposed in several
works [11,12]. To our knowledge, the only DP distributed PCA
algorithm is proposed by Imtiaz et al. [13] as an intermediate
stage of a DP distributed joint independent component analysis
(djICA) algorithm. However, the scheme proposed to send data
from one site to another in a sequential manner, which is less
fault-tolerant.

In this paper, we propose a differentially private distributed
PCA algorithm based on the non-private scheme of Feldman
et al. [7]. We assume that there are several sites with disjoint
data. There is a central node or aggregator but the aggrega-
tor is not trusted. Each site sends a “proxy” data matrix to the
aggregator, which is computed satisfying differential privacy.
The aggregator then computes and releases the consensus PCA
subspace. We investigate the variation of performance of the
proposed algorithm by varying several relevant algorithm and
database parameters on synthetic and real datasets. We empir-
ically show that meaningful utility can be achieved even while
satisfying privacy.
Notation. We denote vectors, matrices and scalars with lower-
case bold-faced letters (e.g. x), upper-case bold-faced letters
(e.g. X), and unbolded letters (e.g. N ), respectively. Indices
are represented with lower-case regular letters and they typi-
cally run from 1 to their upper-case version (e.g. n ∈ [N ] ,
{1, 2, . . . , N}). The n-th column of a matrix X is denoted as
xn. ‖ · ‖2 denotes the Euclidean norm of a vector and spectral
norm of a matrix. ‖ · ‖F and tr(·) denote the Frobenius norm
and the trace.

2. PROBLEM FORMULATION

Consider a system with S different sites each holding dis-
joint datasets and an untrusted central node or aggregator.
The D × Ns data matrix in site s ∈ [S] is denoted by
Xs = [xs,1 . . .xs,Ns ], which we interpret as containing
D-dimensional features of Ns individuals. We assume that
‖xs,n‖2 ≤ 1 ∀s ∈ [S] and ∀n ∈ [Ns]. For simplicity, we
further assume that the observed samples are mean-centered.
The D × D sample second-moment matrix at site s is given
by As = 1

Ns
XsX

>
s . We denote N =

∑S
s=1Ns as the

total number of samples over all sites. If we had all the sam-
ples at the central aggregator (pooled data scenario), then
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the data matrix would be X = [X1 . . .XS ] ∈ RD×N . In
this case, the D × D positive semi-definite second-moment
matrix A is given by: A = 1

N
XX>. The Schmidt ap-

proximation theorem [14] characterizes the rank-K matrix
AK that minimizes the difference ‖A − AK‖F and shows
that the minimizer can be found by taking the SVD of A:
A = VΛV>, where without loss of generality we assume
Λ is a diagonal matrix with diagonal entries {λd(A)} and
λ1(A) ≥ . . . ≥ λD(A) ≥ 0. Additionally, V is a matrix
of eigenvectors corresponding to the eigenvalues. The top-K
PCA subspace of A is the matrix VK(A) = [v1 . . .vK ].
Given VK(A) and the eigenvalue matrix Λ, we can form an
approximation AK = VK(A)ΛKVK(A)> to A, where ΛK

contains theK largest eigenvalues in Λ. For aD×K matrix V̂

with orthonormal columns, the quality of V̂ in approximating
VK(A) can be measured by the captured energy of A as

q(V̂) = tr(V̂>AV̂). (1)

The V̂, which maximizes q(V̂) has columns equal to {vk} cor-
responding to the top-K eigenvectors of A, namely VK(A).
We are interested in approximating VK(A) in a distributed
setting while guaranteeing differential privacy. One naı̈ve ap-
proach would be to send the data matrices from the sites to the
aggregator. When D and/or Ns are large, this entails a huge
communication overhead. In many scenarios the local data are
also private or sensitive. As the aggregator is not trusted, send-
ing the data to the aggregator can result in a significant privacy
violation. Our goals are therefore (i) to reduce the communi-
cation cost, (ii) ensure differential privacy, and (iii) provide a
close approximation to the true PCA subspace VK(A).
Differential privacy. An algorithm A (D) taking values in a
set T provides (ε, δ)-differential privacy [1] if

Pr(A (D) ∈ S) ≤ exp(ε)Pr(A (D′) ∈ S) + δ, (2)

for all measurable S ⊆ T and all data sets D and D′ dif-
fering in a single entry (neighboring datasets). This defini-
tion essentially states that the probability of the output of an
algorithm is not changed significantly if the corresponding
database input is changed by just one entry. Here ε and δ
are privacy risk parameters, where low ε and δ ensure more
privacy. The parameter δ can be interpreted as the probabil-
ity that the algorithm fails. For more details, see the recent
survey [15] or monograph [16]. In our setting, two data ma-
trices correspond to two neighboring datasets if they differ in
one column. For example, Xs = [xs,1 . . . xs,Ns−1 xs,Ns ]
and X′s = [xs,1 . . . xs,Ns−1 x′s,Ns ] are matrices cor-
responding to two neighboring data sets. We observe that
As = 1

Ns
XsX

>
s and A′s = 1

Ns
X′sX

′>
s satisfy the condition

‖As −A′s‖2 ≤ 1
Ns

[17].

3. ALGORITHM

In this section, we describe our proposed algorithm, shown in
Algorithm 1, in detail. The proposed algorithm is based on
the distributed PCA scheme presented in [3, 7]. As mentioned
before, our data samples are distributed in S sites. Each site
s ∈ [S] contains a data matrix Xs ∈ RD×Ns . There is an
aggregator, which is not trusted. In the pooled data scenario,
we have the data matrix X and the sample second-moment ma-
trix A = 1

N
XX>. We refer to the top-K PCA subspace of

Algorithm 1 Differentially private distributed PCA
(DPdisPCA)

Require: Data matrix Xs ∈ RD×Ns for s ∈ [S]; privacy pa-
rameters ε, δ; intermediate dimension R; reduced dimen-
sion K

1: for s = 1, 2, . . . , S do . at the local sites
2: Compute As ← 1

Ns
XsX

>
s

3: Generate D × D symmetric matrix E where {Eij :
i ∈ [D], j ≤ i} drawn i.i.d. from N (0,∆2

ε,δ), where

∆ε,δ = 1
Nsε

√
2 log( 1.25

δ
), and Eij = Eji

4: Compute Âs ← As + E

5: Perform SVD Âs = UΣU>

6: Compute Ps ← URΣ
1
2
R

7: Send Ps to aggregator
8: end for
9: Compute Ac ← 1

S

∑S
s=1 PsP

>
s . at the aggregator

10: Perform SVD Ac = VΛV>

11: Release / send to sites: VK

12: return VK

this sample second-moment matrix as the true (or optimal) sub-
space VK(A). Our goal is to find this optimal rank-K sub-
space in a distributed setting, while ensuring differential pri-
vacy. At each site, we compute the sample second-moment
matrix as As = 1

Ns
XsX

>
s . The L2 sensitivity [1] of the

function f(As) = As is 1
Ns

[17]. We intend to approxi-
mate As such that the approximation is (ε, δ) differentially pri-
vate. To this end, we employ the AG algorithm [17] to com-
pute Âs = As + E, where Âs is the (ε, δ) differentially
private estimate of As. The noise matrix E is generated as
described in Step 3 of Algorithm 1. Next, we compute the
SVD of Âs as Âs = UΣU>. We use UR ∈ RD×R to
denote the matrix containing the top-R columns of U. Ad-
ditionally, we use ΣR ∈ RR×R to denote a diagonal matrix
containing the corresponding top-R diagonal entries of the ma-

trix Σ. Each site then computes Ps = URΣ
1
2
R and sends it

to the aggregator. At the aggregator, we compute the “proxy”
sample second-moment matrix Ac as Ac = 1

S

∑S
s=1 PsP

>
s .

We perform SVD on Ac and release the top-K eigenvector ma-
trix VK , which is the (ε, δ) differentially private approximate
to the true subspace VK(A). Note that, we could compute the
differentially-private approximation to Ps instead of As. How-
ever, the function f(As) = Ps has much higher L2 sensitivity
than f(As) = As. Therefore, we chose to approximate As in
a differentially-private way. Additionally, we opted for adding
Gaussian noise instead of Laplace noise as the Laplace mech-
anism [16] entails L1 sensitivity, which dictates the additive
noise variance to vary with the dimension of the matrix.

Theorem 1 (Privacy of DPdisPCA Algorithm). Algorithm 1
computes an (ε, δ) differentially private approximation to the
optimal subspace VK(A).

Proof sketch. The proof of Theorem 1 directly follows from
using the Gaussian mechanism [1], the AG algorithm [17], the
bound on ‖As −A′s‖2 and recalling that the data samples in
each site are disjoint. The computation of Ps at each site is
(ε, δ) differentially private. As differential privacy is invariant
under post-processing, we can combine the “proxy” data ma-
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Table 1. Notation of performance measures
Algorithm / Setting Performance Index
Pooled Data qpooled
DPdisPCA qDPdisPCA

Local Data qlocal
Sending Âs qfull

trices Ps at the aggregator, perform the SVD and release VK .
The released subspace VK is thus the (ε, δ) differentially pri-
vate approximate to the true subspace VK(A).

Communication cost. The algorithm is an one-shot approach
to compute the PCA in a distributed setting. That is, the sites
send Ps only once to the aggregator. The aggregator combines
Ps to compute Ac and releases VK . Therefore, the commu-
nication cost is proportional to S × D × R. We note that if
we send the second-moment matrix Âs to the aggregator, the
cost would be much higher (proportional to S × D2) because
typically, R� D.
Limit on performance. Although we are adding i.i.d. Gaus-
sian noise with a specific variance to As at each site, the trunca-
tion operation (i.e., computing the low-rank matrix Ps) is not
linear and affects the noise distribution. This means that the
noise in Ps is neither i.i.d. nor zero-mean. Therefore, at the
aggregator the estimator Ac = 1

S

∑S
s=1 PsP

>
s has a larger

variance to account for the non-zero mean and non-i.i.d. noise.
If we instead send the D ×D matrix Âs from each site to the
aggregator, the same estimator Ac = 1

S

∑S
s=1 Âs would have

much smaller variance and this would provide better perfor-
mance. However, the performance is still limited by the larger
sensitivity of the function f(As) = As. That is, if the ag-
gregator was trusted, then we could add noise just once at the
aggregator before releasing the PCA subspace VK . The vari-
ance of the noise is proportional to 1

N2 , whereas the variance
of the estimator Ac = 1

S

∑S
s=1 Âs is proportional to S

N2 . The
complete proof is omitted due to page count limitations.

4. EXPERIMENTAL RESULTS

It is apparent that the differentially private distributed PCA al-
gorithm has a large parameter space. In particular, one might
be interested to know how the performance of the algorithm
varies as a function of privacy level, sample size and number
of sites. Another interesting parameter is the intermediate di-
mension R. In this section, we present experimental results
to show empirical comparison between the proposed algorithm
and differentially private PCA on pooled data. We also included
the performance variation of differentially private PCA on local
data (i.e. data of a single site). We performed experiments on
three datasets: a synthetic dataset (D = 200, K = 50) gen-
erated with zero mean and a pre-determined covariance matrix,
the MNIST dataset (D = 784, K = 50) [18] (MNIST) and the
Covertype dataset (D = 54, K = 10) [19] (COVTYPE). The
MNIST consists of handwritten digits and has a training set of
60000 samples, each of size 28× 28. The COVTYPE contains
the forest cover type for 30× 30 meter cells obtained from US
Forest Service (USFS) Region 2 Resource Information System
(RIS) data. We collected the dataset from the UC Irvine KDD
archive [20]. For our experiments, we randomly selected 60000
samples from the COVTYPE dataset. We preprocessed the data

by subtracting the mean (centering) and normalizing the sam-
ples with the maximum L2 norm in each dataset to enforce
the condition ‖xn‖2 ≤ 1 ∀n. We note that this preprocess-
ing step is not differentially private. However, this step can be
modified to satisfy DP at the cost of some utility. In all cases
we show the average performance over 10 runs of the algo-
rithms. As a performance measure of the produced subspace
from the algorithm, we choose the captured energy defined in
(1). Let us denote the captured energy in the true subspace
be qo = tr(VK(A)>AVK(A)), where A is the pooled-data
sample second-moment matrix. In Table 1, we show the nota-
tion we use for representing the performance measures of dif-
ferent algorithms. For comparison, we plot the ratio of these
quantities with respect to qo.
Dependence on privacy parameter ε. First, we explore the
trade-off between privacy and utility; i.e., between ε and the
captured energy. We note that the standard deviation of the
added noise (entries in E) is inversely proportional to ε – bigger
εmeans higher privacy risk but less noise and thus better utility.
We observe this in our experiments as well. In Figures 1(a)-(c),
we show the variation of the ratio of the quality of different sub-
spaces with respect to qo for different values of ε. For this ex-
periment, we kept δ, the number of samples per site Ns and the
number of sites S fixed. For all the datasets, we observed that as
ε increases (higher privacy risk), the captured energy increases.
qDPdisPCA would reach the optimal qo for sufficiently large ε.
The distributed algorithm clearly outperforms the local PCA
algorithm, which is intuitive because including the information
from multiple sites to estimate a population parameter always
results in better performance than using the data from a single
site only. Another interesting observation is that for datasets
with lower dimensional samples, we can use smaller ε (i.e., to
guarantee lower privacy risk) for the same utility. We observe
that the performance index qfull

qo
is better than qDPdisPCA.

qo
. This

is due to the increased variance of the estimator at the aggre-
gator, as explained in Section 3. The performance gap can be
considered as the cost of saving on communication overhead.
Additionally, the performance gap between qfull

qo
and qpooled

qo
is

due to the increased noise variance resulting from the higher
sensitivity of f(As) at local sites.
Dependence on number of samples Ns. Intuitively, it should
be easier to guarantee smaller privacy risk ε and higher utility
q(·) when the number of samples is large. Figures 1(d)-(f) show
how the captured energy increases as a function of sample size
per site Ns. The variation with Ns reinforces the results seen
earlier with variation of ε. For a fixed ε and δ, the utility in-
creases as we increase Ns. For sufficiently large local sample
size, the captured energy will reach qo. Again, we observe a
sharper increase in utility for lower-dimensional dataset.
Dependence on number of sites S. Next, we conduct an ex-
periment where we kept the total number of samples N fixed
and vary the number of sites S. ε and δ were also kept constant.
We observe in Figures 1(g)-(i) that for all the three datasets,
as we increase the number of sites (i.e., decrease the sample
size Ns at each site), the performance deteriorates and then
reaches a saturation point. The decrease in performance can
be explained as follows: because we have smaller and smaller
samples per site, the estimate of the local second-moment ma-
trix As deviates more and more from the true sample second-
moment matrix A. Moreover, as the sensitivity of the function
f(As) = As is 1

Ns
, we are adding noise with higher vari-

ance when the sample size is smaller. At the presence of noise
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with high variance, the PCA is essentially capturing only a few
eigen-directions that are stronger than the noise, instead of cap-
turing all the K directions that specify the data. Therefore, we
observe the performance deterioration with increasing number
of sites.
Dependence on intermediate dimension R. We explore the
variation of performance with the intermediate dimension R.
Intuitively, if R is too small, the matrix Ps that we send from
each site will not represent the local second-moment matrix
well. This affects the computation of VK . On the other hand,
if we choose R to be too large, we are increasing the commu-
nication overhead (recall that each site sends a D × R matrix
to the aggregator). In Figures 1(j)-(l), we show the variation of
performance with the ratio R

K
. We observe that initially the per-

formance shows improvement as the ratio increases but soon it
reaches saturation. This is because most of the energy of As

is concentrated within a few eigen-directions. Including more
directions does not necessarily increase the captured energy.

Dependence on privacy parameter δ. Finally, we explore the
variation of performance with the other privacy parameter δ.
Recall that δ can be considered as the probability that the al-
gorithm releases the private information without guaranteeing
privacy. We therefore want this to be as small as possible. How-
ever, lower δ results in larger noise variance. In Figure 2, we
show how the performance indices vary with varying δ. We
observe that if δ is not too small, the proposed algorithm can
achieve good utility.

5. CONCLUSION

In this paper, we proposed a differentially private distributed
PCA algorithm based on the distributed PCA scheme proposed
in [7]. We showed empirically on synthetic and real datasets
that it is possible to have meaningful utility while preserving
privacy. We investigated the performance variation of the pro-
posed algorithm with different parameters and showed that the
utility can reach that of the non-private algorithm for some pa-
rameter choices. We also observed that for lower-dimensional
datasets, we can achieve the same utility for a stricter privacy
guarantee and a smaller sample size. We empirically verified
the intuition that the distributed PCA always produces better re-
sults than local PCA. We investigated the cost of performance
for lower communication overhead and the limit on the per-
formance of a distributed PCA algorithm using the Gaussian
mechanism. As a future work, one can try to find utility bounds
in terms of privacy parameters and an aggregation mechanism
that achieves better performance by accounting for the density
of the truncated noise.
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