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ABSTRACT

Tensor decompositions have applications in many areas including
signal processing, machine learning, computer vision and neuro-
science. In this paper, we propose two new differentially private
algorithms for orthogonal decomposition of symmetric tensors from
private or sensitive data; these arise in applications such as latent
variable models. Differential privacy is a formal privacy framework
that guarantees protections against adversarial inference. We inves-
tigate the performance of these algorithms with varying privacy and
database parameters and compare against another recently proposed
privacy-preserving algorithm. Our experiments show that the pro-
posed algorithms provide very good utility even while preserving
strict privacy guarantees.

Index Terms— Differential privacy, orthogonal tensor decom-
position, latent variable model

1. INTRODUCTION

Tensor decomposition has recently emerged as a powerful tool for
inference algorithms because it can be used to infer dependencies
beyond second-moment methods such as Singular Value Decompo-
sition (SVD) or Principal Component Analysis (PCA) [1–4]. SVD or
PCA operate only on sample second-moment or covariance matrices,
whereas tensor decomposition exploits higher order dependencies;
these are particularly useful for learning latent variable models [1].
Related Works. Some of the most well-known tensor decom-
position algorithms are Tucker decomposition [5] and Canoni-
cal Polyadic Decomposition (CANDECOMP) or Parallel Factors
(PARAFAC). The later two are sometimes referred together as the
CP decomposition [6, 7]. These decompositions can be considered
to be higher-order generalizations of the matrix SVD and PCA. Al-
though decomposing arbitrary tensors is computationally intractable,
efficient algorithms exists for finding decompositions of structured
tensors. For example, the tensors that appear in several latent vari-
able models can be efficiently decomposed [1] utilizing a variety of
approaches such as generalizations of the power iteration [8].

Many signal processing and machine learning algorithms in-
volve analyzing private or sensitive data. These algorithms may po-
tentially leak information that could allow harmful inferences about
individuals in the data. Differential privacy (DP) [9] is a strong and
cryptographically-motivated framework for protecting algorithms
against such inferences. In this paper, we propose two algorithms
that approximate orthogonal decomposition of symmetric tensors
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while satisfying differential privacy. Wang and Anandkumar [10]
recently proposed an algorithm for DP tensor decomposition using
a noisy version of the tensor power iteration [1, 8]. We empirically
show that, due to the large amount of noise introduced in their
method, it requires large sample sizes to perform well.

To address this, we propose two new algorithms, AGN and AVN,
for DP orthogonal tensor decomposition (OTD), both of which of-
fer (ε, δ)-DP. These algorithms are inspired by input perturbation
methods for differentially private PCA [11,12]. We use the Analyze
Gauss (AG) algorithm [12] at an intermediate stage of the OTD pro-
cedure. Our methods add symmetric noise to the third-order sym-
metric tensor, which we can obtain from the empirical third-order
moment. We compare our proposed algorithms with the one pro-
posed in [10] on a synthetic dataset and show significant improve-
ments.

2. PROBLEM FORMULATION

Preliminaries and Notation. We refer the reader to Kolda and
Bader [13] for detailed definitions of tensor terminology. We denote
the set {1, . . . , N} by [N ], tensors with calligraphic scripts (X ),
fibers and vectors with bold lower case letters (x), matrices as bold
upper case letters (X), scalars with unbolded letters (M ) and indices
with smaller case letters. An M -way tensor X ∈ RD1×...×DM

is rank-1 if it can be written as the outer product of M vectors:
X = x1 ⊗ . . . ⊗ xM , where xm ∈ RDm and ⊗ denotes the
outer product. A tensor X can be considered [1] to be a multi-
linear map: for a set of matrices {Vm ∈ RDm×Km : m ∈ [M ]},
the (k1, . . . , kM )-th entry in the M -way tensor representation of
Z = X (V1, . . . ,VM ) ∈ RK1×...×KM is

Zk1,...,kM =
∑

d1...dM

[X ]d1...dM [V1]d1,k1 · · · [VM ]dM ,kM
. (1)

The vectorization of the tensor X is defined as [14, 15]

vecX =

D1∑
d1=1

· · ·
DM∑
dM=1

[X ]d1,...,dM eD1
d1
◦ · · · ◦ eDM

dM
,

where ◦ denotes the Kronecker product [13] and eDm denotes the
Dm-dimensional elementary (or unit basis) vector. We note that
vecX is a (

∏M
m=1 Dm)-dimensional vector. A tensor is symmetric if

the entries do not change under any permutation of the indices. The
rank of a tensorX is the smallest number of rank-1 tensors that sums
to the original tensor [4]. The norm ‖X‖ of a tensor X is the Frobe-
nius norm, which is equal to theL2-norm ‖vecX‖2. We also observe
that for a vector x ∈ RD , if ‖x‖2 = 1 then ‖x⊗ x⊗ · · · ⊗ x‖ = 1
since [x⊗ · · · ⊗ x]d1,...,dM = [x]d1 · · · [x]dM .
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Orthogonal Tensor Decomposition (OTD). LetX be anM -wayD
dimensional symmetric tensor. Given real valued vectors vk ∈ RD ,
Comon et al. [16] showed that there exists a decomposition of the
form X =

∑K
k=1 λkvk ⊗ · · · ⊗ vk. Without loss of generality, we

can assume that ‖vk‖2 = 1 ∀k. If we can discover a D ×K matrix
V = [v1 . . .vK ] with orthogonal columns, then we say that X has
an orthogonal symmetric tensor decomposition [4]. For simplicity,
we focus on M = 3. A unit vector u ∈ RD is an eigenvector of X
with eigenvalue λ ifX (I,u,u) = λu, where I is theD×D identity
matrix. Now, the orthogonal tensor decomposition proposed in [1]
is based on the mapping (tensor power method)

u 7→ X (I,u,u)

‖X (I,u,u)‖2
, (2)

which can be considered as the tensor equivalent of the well-known
matrix power method. Obviously, all tensors are not orthogonally
decomposable. As the tensor power method requires the eigenvec-
tors {vk} to be orthonormal, we need to project the tensor on a
subspace such that the eigenvectors become mutually orthogonal
(whitening).
Applications. OTD is important for effective inference in models
such as the single topic model (STM) of documents, and the mix-
ture of Gaussians (MOG) model [1]. In this work, we consider
STM model (due to page limits), where we measure the relative co-
occurrence of tuples of words in a corpus of documents: this yields
a 2-way-tensor (M2 =

∑K
k=1 wkak ⊗ ak) for the second moment

matrix of the data, and the 3-way-tensor (M3 =
∑K
k=1 wkak⊗ak⊗

ak) for co-occurrences of 3-tuples of words. Our goal is to recover
{wk} and {ak} from the empirical moments: M2 = E[t1 ⊗ t2]
andM3 = E[t1 ⊗ t2 ⊗ t3], where tl is the L-th word in a docu-
ment. We recall that {wk} are the probabilities of selecting the k-th
topic and {ak} are the word probabilities given the k-th topic. We
intend to estimate {wk} and {ak} by performing orthogonal tensor
decomposition onM3.

For both STM and MOG, decomposing M3 using the tensor
power method in (2) requires the ak’s to be orthogonal to each other.
But in general, they are not. To address this, we can project the
tensor onto some subspace W ∈ RD×K such thatM3(W,W,W)
is orthogonally decomposable. From (1), we have

M3(W,W,W) =

K∑
k=1

wk(W>ak)⊗ (W>ak)⊗ (W>ak).

To find W, we can compute the SVD(K) of the D × D second-
order moment M2 as M2 = UDU>, where U ∈ RD×K and
D ∈ RK×K . Define W = UD−

1
2 and then compute the projec-

tion M̃3 =M3(W,W,W). The tensor M̃3 ∈ RK×K×K is now
orthogonally decomposable as the vectors {W>ak} are orthonor-
mal to each other. We can utilize the tensor power method on M̃3 to
recover the weights {wk} and the component vectors {ak}. The de-
tail of the tensor power method is available in Anandkumar et al. [1].
Differentially-private OTD. In this paper, we study algorithms that
approximate orthogonal decomposition of symmetric tensors, while
preserving differential privacy [9]. An algorithmA(D) taking values
in a set T provides (ε, δ)-differential privacy if

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S] + δ, (3)

for all measurable S ⊆ T and all datasets D and D′ differing in a
single entry. This definition essentially states that the probability of
the output of an algorithm is not changed significantly if the corre-
sponding database input is changed by just one entry. Here, ε and δ

are privacy parameters, where low ε and δ ensure more privacy. The
parameter δ can be interpreted as the probability that the algorithm
fails. For more details, see the recent survey [17] or monograph [18].

We note that the key step in OTD is the tensor power method
mapping shown in (2). In order to ensure differential privacy for
the decomposition, we may either add noise scaled to the L2 sen-
sitivity [12] of the mapping operation at each iteration step or we
can add noise to the tensor X itself just once. Adding noise in each
iteration step might result in a poor accuracy of the recovered eigen-
vectors and eigenvalues. Therefore, we add noise to the tensor itself
prior to employing the tensor power method. Recall that in the STM
setup, we observe and recordN documents. Let us consider two sets
of documents differing in only one sample (e.g., the last one). Let
the empirical second-order moment matrices be M2 and M′2 and the
third-order moment tensors beM3 andM′3, respectively, for these
two sets. We consider the two tensors,M3 andM′3, as neighboring.
We observe that

M2 =
1

N

N−1∑
n=1

t1,nt
>
2,n +

1

N
t1,Nt>2,N

M′2 =
1

N

N−1∑
n=1

t1,nt
>
2,n +

1

N
t′1,Nt′

>
2,N ,

where tl,n denotes the l-th word of the n-th document. Similarly,
we observe

M3 =
1

N

N−1∑
n=1

t1,n ⊗ t2,n ⊗ t3,n +
1

N
t1,N ⊗ t2,N ⊗ t3,N

M′3 =
1

N

N−1∑
n=1

t1,n ⊗ t2,n ⊗ t3,n +
1

N
t′1,N ⊗ t′2,N ⊗ t′3,N .

We first perform SVD on M2 to compute W. We use the AG algo-
rithm [12] to make this operation differentially private. We look at
the sensitivity:

‖M2 −M′2‖2 =
1

N
‖t1,Nt>2,N − t′1,Nt′

>
2,N‖2 ≤

√
2

N

∆
= ∆2.

The inequality follows from the encoding tl,n = ed and recalling
that at-most two entries in the difference term can be non-zero. We
can therefore add i.i.d. Gaussian noise with variance scaled to ∆2

to M2 to make the computation of W satisfy (ε1, δ1) differential
privacy. Now, we need to projectM3 on W before using the ten-
sor power method. We can choose between making the projection
operation differentially private, or we can make the M3 itself dif-
ferentially private before projection. We found that making the pro-
jection differentially private involves addition of a large amount of
noise and more importantly, the variance of the noise depends on
the top-K singular values of M2. Therefore, we choose to make the
tensor itself differentially private. To find the sensitivity of the tensor
valued function f(M3) =M3, we observe:

‖M3 −M′3‖ =
1

N
‖t1,N ⊗ t2,N ⊗ t3,N − t′1,N ⊗ t′2,N ⊗ t′3,N‖

≤
√

2

N

∆
= ∆3.

Again, the inequality follows from the encoding tl,n = ed and re-
alizing that only two entries in the difference term can be non-zero,
each with value at most 1.
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Algorithm 1: AGN / AVN Algorithm

Input : Sample second-order moment matrix M2 ∈ RD×D
and third-order moment tensorM3 ∈ RD×D×D ,
privacy parameters ε1, ε2, δ1, δ2

1 Generate D ×D symmetric matrix E where
{Eij : i ∈ [D], j ≤ i} drawn i.i.d. fromN (0, τ2

1 ), where

Eij = Eji and τ1 =


∆2
ε1

√
2 log

(
1.25
δ1

)
, for AGN

∆2
ε1

√
2 log

(
1.25
δ1+δ2

)
, for AVN

2 Compute M̂2 ←M2 + E

3 Compute SVD(K) on M̂2 = UDU>

4 Compute W = UD−
1
2

5 Draw a vector b ∈ RDsym :

b ∼

N (0, τ2
2 I), τ2 = ∆3

ε2

√
2 log

(
1.25
δ2

)
for AGN

fb(b) = 1
α

exp (−β‖b‖2) , β = ε2
∆3

for AVN
6 Generate symmetric E ∈ RD×D×D from entries of b
7 Compute M̂3 ←M3 + E
8 Compute M̃3 ← M̂3(W,W,W)

Output: Private orthogonally decomposable tensor M̃3,
projection subspace W

3. ALGORITHMS

In this section, we describe two new algorithms for (ε, δ) differen-
tially private orthogonal tensor decomposition: AGN and AVN. Both
of the algorithms first utilize the AG algorithm [12] to compute a dif-
ferentially private approximate to M2. The L2 sensitivity of M2 is
given by ∆2. We generate a D × D symmetric matrix E (Step 1
of Algorithm 1). By computing the SVD(K) of M̂2 (the DP ap-
proximate to M2), we find the subspace W required for whitening
and also for recovering {ak}. We note that this step is (ε1, δ1)-
differentially private for AGN and (ε1, δ1 +δ2)-differentially private
for AVN. Next, we draw a Dsym =

(
D+2

3

)
-dimensional vector b

(Step 5 of Algorithm 1). The proposed algorithms differ in this step,
i.e., they differ in the distribution from which b is sampled. To pre-
serve the symmetry ofM3 upon noise addition, we form a symmet-
ric tensor E ∈ RD×D×D from the entries of b. Then we compute
M̂3 = M3 + E . This is the (ε2, δ2)-differentially private approx-
imate to M3 for AGN (and (ε2, 0) for AVN). Finally, we project
M̂3 on the subspace W to get the orthogonally decomposable ten-
sor M̃3. The overall procedure is (ε, δ)-differentially private, where
ε = ε1 + ε2 and δ = δ1 + δ2. The detailed procedure is shown in
Algorithm 1. In the density fb(b), α is a normalizing constant and
β = ε2

∆3
is a parameter of the density. We do not need to specify α

because sampling from fb(b) can be performed without any knowl-
edge of α. The sampling procedure is omitted due to page limits.
Note that although the proposed algorithms differ in one step (Step
5), the implications are further-reaching. With AVN, the computa-
tion of M̂3 is pure ε2-DP. Therefore, if one uses an ε1-DP algorithm
for Step 3, or if the tensor is already orthogonally decomposable
(i.e., no need for whitening), then the AVN algorithm would provide
a pure ε-DP algorithm for OTD.

Theorem 1 (Privacy of AGN and AVN Algorithms). Algorithm 1
computes the orthogonally decomposable tensor M̃3 with (ε1 +

ε2, δ1 + δ2)-differential privacy for both AGN and AVN.

Proof sketch. Proof of Theorem 1 for AGN follows from using the
Gaussian mechanism [9] and the sensitivities of M2 and M3 and
considering that aD-dimensionalM -mode symmetric tensor is fully
determined by Dsym =

(
D+M−1

M

)
entries [16]. For the privacy of

AVN, consider the algorithm Y = M3 + E , where E is a symmet-
ric tensor. E consists Dsym =

(
D+2

3

)
number of unique entries.

We draw a vector b ∈ RDsym according to the density defined by
fb(b) [19] and then form E from the entries of b. The probability
of the event of drawing a particular sample from fb(b) is the same
as drawing a symmetric tensor with the same unique entries as the
aforementioned vector from some equivalent density on symmetric
tensors. Now, we look at the ratio of the densities:

f(Y|M3)

f(Y|M′3)
=

exp (−β‖vecY − vecM3‖2)

exp (−β‖vecY − vecM′3‖2)

≤ exp
(
β‖M′3 −M3‖

)
≤ exp (β∆3) ,

where the inequality is introduced using the triangle inequality
of norms. Therefore, the algorithm Y = M3 + E is (ε2, 0)-
differentially private by setting β = ε2

∆3
.

Theoretical Performance Guarantee. Although we are adding
symmetric noise to the third-order moment tensor, an orthogonal de-
composition need not to exist for the perturbed tensor, even though
the perturbed tensor is symmetric [1, 4]. Anandkumar et al. [1] pro-
vided a bound on the error of the recovered decomposition in terms
of the operator norm of the tensor perturbation. For our proposed
algorithms, the perturbation includes the sampling error as well as
the differential-privacy noise. Even without accounting for the sam-
pling error, for both of our proposed algorithms, the operator norm
of the added noise ‖E‖op is a random quantity, and requires new
measure concentration results to analyze. Relating these bounds to
the error in estimating {ak} and {wk} is nontrivial and we defer
this for future work.
Prior Work: Tensor Power Iteration. To the best of our knowl-
edge, only one algorithm is proposed for differentially private
OTD [10] with (ε, δ)-differential privacy. It requires that the in-
put to the tensor power method be orthogonally decomposable and
adds Gaussian noise at each step of the tensor power iteration and
also while computing the eigenvalues. We demonstrate next that our
methods significantly outperform this approach.

4. EXPERIMENTAL RESULTS

Because the algorithms have a large parameter space, we focus on
measuring how well the outputs of these algorithms approximate
the true components {ak} and {wk}. Let the recovered compo-
nent vectors be {âk}. To capture the disparity between {ak} and
{âk}, we define an error metric: ecomp = 1

K

∑K
k=1 γ

k
min, where

γkmin = mink′∈[K] ‖âk − ak′‖2. A similar measure is used in the
dictionary learning literature [20]. For comparison, we show the er-
ror resulting from the âk’s achieved from the two proposed methods,
the DP-TPM [10] and the non-private method [1]. We also show the
error considering random vectors as {âk} because this error cor-
responds to the worst possible results (i.e., not considering any in-
formation from data). As recovering {âk} is closely related with
recovering {wk} (Section 4.3.1 in [1]), we only show the error as-
sociated with recovering {âk}. In all cases we show the average
performance over 10 runs of each algorithm. For both the AGN and
AVN algorithms, there are two stages where we add noise to ensure
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Fig. 1. Variation of error for the STM application using synthetic data. Top-row: with ε. Bottom-row: with N

differential-privacy. We equally divided ε to set ε1 and ε2 for the two
stages. For the AGN, we equally divided δ to set δ1 and δ2. However,
for the AVN, only the first stage requires δ. Optimal allocation of ε
and δ in multi-stage algorithms is still an open question. We note that
the neighborhood definition ofM3 is a bit different in [10]. While
implementing the DP-TPM [10], we modified the algorithm slightly
(specifically, the assignment of ν in Algorithm 3 of [10]). In our
definition ∆2f1 ≤ 2‖u‖2∞ and ∆2f2 ≤ 2‖u‖3∞. Therefore, we set

ν = 2
ε′

√
2 log

(
1.25
δ′

)
.

Performance Variation in the STM Setup. We performed ex-
periments on two synthetic datasets of different feature dimensions
(D = 10, K = 5 and D = 50, K = 10) generated with pre-
determined w and {ak}. It should be noted here that the recov-
ery of {ak} is difficult, because the recovered word probabilities
from the tensor decomposition, whether private or non-private, may
not always be valid probability vectors (i.e., no negative entries and
sum to 1). Therefore, prior to computing the ecomp, we ran a post-
processing step (0-out negative entries and then normalize by sum-
mation) to ensure that the recovered vectors are valid probability
vectors. This process is non-linear and potentially makes the recov-
ery error worse. However, for practical STM,D is not likely to be 10
or 50, rather it may be of the order of thousands, simulating which
is a huge computational burden. In general, if we want the same pri-
vacy level for higher dimensional data, we need to increase the sam-
ple size. We refer the reader to some efficient (but non-differentially
private) implementations [21].
Performance Variation with ε. We first explore the privacy-utility
tradeoff between ε and ecomp. In the top-row of Figure 1, we show
the variation of ecomp with ε for a fixed δ for two different feature
dimensions. For both of the feature dimensions, we observe that as
ε increases (higher privacy risk), the errors decrease. The proposed
methods outperform the DP-TPM [10] and match the performance
of the non-private method for large enough ε. The proposed AGN
algorithm outperforms all others in all settings. The AVN algorithm
performs slightly worse than the AGN for D = 10, but still much
better than the DP-TPM. We observe that the performance gap be-
tween the proposed AVN algorithm and the DP-TPM algorithm is
smaller for D = 50 than for D = 10. This can be explained in the
following way: as D increases, the length of the vector b ∈ RDsym

increases non-linearly. This Dsym is in fact the shape parameter

of the Erlang random variable ‖b‖2. The variance of the Erlang
random variable increases linearly with the shape parameter. There-
fore, as D increases (with a fixed ε and N ), the variance of the noise
added according to fb(b) increases and thereby deteriorates the per-
formance. However, increasing N makes the proposed algorithms
perform better. We show the error bars for the DP-TPM to demon-
strate the instability of the performance. We believe this is because
the amount of added noise at each step for the DP-TPM is too high
for a stable output even for larger ε.
Performance Variation withN . The bottom-row of Figure 1 shows
how the errors vary as a function of N for two different feature di-
mensions, while keeping ε and δ fixed. The variation with N reiter-
ates the results seen earlier. The proposed algorithms outperform the
DP-TPM [10] by a large margin for D = 10. We observe that for
D = 50, the AVN algorithm, performs only slightly better than the
DP-TPM, which is unlike the situation for D = 10. This can again
be attributed to the fact that as D increases, the length of the vec-
tor b ∈ RDsym increases, which increases the variance of the added
noise. Between the proposed algorithms, the AGN performs better
than the AVN algorithm, just as before. For larger N , it achieves al-
most the same utility as the non-private algorithm. Even for smaller
ε with a proper sample size, the error is very low. For the D = 10
case, the AGN always performs very closely with the non-private al-
gorithm. For larger ε and smaller D, the AVN performs similarly as
AGN.

5. CONCLUSION

In this paper, we proposed two new algorithms for differentially pri-
vate orthogonal tensor decomposition. We empirically compared the
performance of the proposed algorithms with that of the recently
proposed differentially private orthogonal tensor decomposition al-
gorithm on synthetic datasets, while varying relevant dataset and al-
gorithm parameters. In general, the AGN and the AVN algorithms
demonstrated better performance than the DP-TPM [10]. The pro-
posed algorithms offered very good utility even for strong privacy
guarantees and matched the utility of non-private orthogonal ten-
sor decomposition for some parameter choices. Our initial results
suggest that the asymptotic guarantees for differentially private al-
gorithms, such as the one proposed by Wang and Anandkumar [10],
may not always reflect their empirical performance.
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