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ABSTRACT

Increasingly in the ’big data’ era, point process network data is ap-
pearing e.g. in social media but also genomics, high frequency fi-
nance and neurosicence. And the most basic problem is that of iden-
tifying network structure. As with all network system identification
problems this is enabled by the use of sparsity. Here, for the first
time, we develop a vector l0 sparsity approach for identification of a
network of interacting Hawkes processes. We apply the new method
to genomic data on a transcriptional regulatory network in embry-
onic stem cells and the results are compared with previous work and
experimental findings.

Index Terms— genomics, network topology, point process, sys-
tem identification, sparsity

1. INTRODUCTION

Networks are ubiquitous but understanding of their dynamics is not.
Particularly for network data generated in areas such as the social
sciences (social media) [1],[2], biology (genomics)[3], finance (high
frequency or high sampling rate data) [4], a fundamental issue is the
identification of the network topology. Analog network data cur-
rently dominates but point process data is increasingly becoming
available in all the areas above.

Network system identification methods based on sparsity, have
been developed in a number of literatures; but only some of these
treat models that deal with dynamics.

The emphasis in this sparsity dynamics literature has been on
l1 penalised formulations [5],[6],[7],[8] since these typically lead to
convex optimization problems. But convexity is no longer guaran-
teed for point process models which have a non-quadratic likelihood.
Thus the l0 penalty, which is known to produce greater sparsity [9]
becomes attractive even though it comes with non-convexity.

In our previous work on point process network identification
[10],[11],[12],[13] we have considered only the l1 case. Here, for
the first time, we develop a vector or group l0 penalized approach.
Because of the nonconvexity of the l0 penalty, the l0 algorithm has
to be rebuilt from the ground up.

The remainder of the paper is organized as follows. In section 2
we briefly review the Hawkes-Laguerre point process model. In sec-
tion 3 we develop the new algorithm. In section 4 we provide a
comparative analysis of some genomic data showing the superiority
of the l0 approach over the l1. Section 5 contains the conclusion.

This work was supported partly by the Australian Research Council and
also under grant NPRU 5233 of the Higher Education Comission of Pakistan.

2. THE HAWKES-LAGUERRE MODEL

Consider a network of d dynamic processes represented by nodes.
A causal interaction between two nodes is represented by a directed
link. The output at each node is a spike train and furthermore observ-
able. Then, the network can be modelled by a multivariate point pro-
cess Nt that is observed on the interval 0 < t ≤ T . The nodal pro-
cesses are the scalar counting processes Nk,t, k = 1, · · · , d where
Nk,t = # events of the k-th process in (0, t].

We assume that No-Simultaneity [14] (or orderliness [15])
holds, that is, in a very fine time increment δ with high probability
only zero or one event of any type can occur. Then, we can define
the vector stochastic intensity

P (Nδ
k,t = 1|Ht) = µk,tδ + o(δ), k = 1, ..., d

where Nδ
k,t = Nk,t+δ −Nk,t,Ht is the history of the vector count-

ing process Ns, 0 ≤ s < t and limδ→0
o(δ)
δ

= 0.
The output at node k can be modelled as

yk,t = µk,t + νk,t, k = 1, ..., d

where yk,t = 1
δ
Nδ
k,t and νk,t is a martingale increment noise.

The Hawkes vector stochastic intensity model [16, 17] is

µk,t = ck + Σd1

∫ t

−∞
gkj(u)dNj,t−u, (2.1)

≡ µt = c+

∫ t

−∞
G(u)dNt−u

where c is the d-vector of background firing rates andG(.) is a d×d
matrix whose (k, j)-th entry gkj(.) is the Hawkes impulse response
(HIR) of the directed link to node k from node j.

Positivity of the stochastic intensity can be ensured with ck >
0, gkj(.) ≥ 0. Furthermore, stationarity is ensured by requiring that
Γ =

∫∞
0
G(u)du have largest eigenvalue strictly less than 1. Then

the Hawkes (stationary) rate [16, 17] is µ = (I − Γ)−1c.
The HIR gkj can be expanded in Laguerre polynomials, which

are crucial on two counts. Firstly they provide a causal basis [18];
secondly the basis elements are positive and this enables positivity
of the HIR as follows

gkj(u) = Σ
pkj
1 βkj,lφkj,l(u)

with

φkj,l(u) = βkj,o
(uβkj,o)

(l − 1)!

l−1

e−βkj,ou
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where βkj,o is the reciprocal of the time constant. This is similar to
[19, 20]. But the addition of the (l − 1)! in the denominator and the
multiplier βkj,o in the numerator ensure∫ ∞

0

φkj,l(u)du = 1

so that we get the simple expression

Γ = [Γkj ]

= [

∫ ∞
0

gkj(u)du] = [
∑
l

βkj,l].

Substituting the Laguerre basis expansion in (2.1), the stochastic
component due to node j is∫ t

−∞
gkj(u)dNj,t−u = Σ

pkj
1 βkj,l

∫ t

−∞
φkj,l(u)dNj,t−u

= Σ
pkj
1 βkj,lψkj,l;t

where crucially, ψkj,l;t can be precomputed and so can be assumed
known.

We thus have a linear (in the parameters) model for the stochas-
tic intensity of node k

µk,t = ck + Σdj=1Σpl=1βkj,lψkj,l;t, k = 1, ..., d (2.2)

where we have taken p = max{pkj}k=1,...,d,j=1,...,d.
Note that the Laguerre expansion provides a valid causal basis

expansion for any positive βkj,o and so βkj,o can be specified by the
user and need not be estimated. Since 1

βkj,o
is a time constant the

choice of βkj,o controls the extent of memory in the system and this
interpretation facilitates its choice.

3. NETWORK TOPOLOGY IDENTIFICATION

We partition the observation interval 0 < t ≤ T into fine time bins
of width δ. Let T = nδ and t = mδ, m = 0, ..., n − 1. The
output at the k-th node is then yk,m = yk,mδ . Let yk denote the
output vector at node k after subtracting the background rate, i.e.,
yk = (yk,0, yk,1, yk,2, ..., yk,n−1)T − ck1. Then, the Laguerre
model (2.2) yields the linear regression model

yk = Xkβk + vk (3.3)

where βk = (βk1,1, ..., βk1,p, βk2,1, ..., βkd,p)
T and

Xk = (Xk1, ..., Xkd) with

Xkj =

 ψkj,1;0 ... ψkj,p;0
...

. . .
...

ψkj,1;n−1 ... ψkj,p;n−1



The parameter vector βk can be grouped as βk =

 βk1

...
βkd

where

βkj = (βkj,1, ..., βkj,p)
T . Then, the column-wise partition Xkj

corresponds to the βkj group. Note that the number of parameters
in each group is equal to p. This is not a necessary condition. If
pkj is the number of parameters in the j-th group, then the param-
eter vector βk is of length Σdj=1pkj and the Xkj partition has the
corresponding number of pkj columns.

The network topology identification problem under the sparsity
constraint can be formulated as a regularized least squares problem.

3.1. Penalized Least Squares Problem

The vector l0-regularized least squares (lo-LS) criterion for grouped
variables is

J(β)=Σdk=1

(
‖yk −Xkβk‖2+λkΣdj=1I(‖βkj‖ 6= 0)

)
(3.4)

where λk > 0 is the regularization parameter and I(‖βkj‖ 6= 0) =
1 if ‖βkj‖ 6= 0. It is crucial to note the vector or group nature of
the penalty which enables whole node to node links to be removed
simultaneously. This is not the same as the scalar l0 penalty defined
as Σpl=1I(βkj,l 6= 0) which takes values in the interval [0, p] and can
ensure that some but not all entries in βkj are zero. Also note that
the background rate (hidden in yk) is not regularised.

Note that the system identification problem is further com-
pounded by the non-negativity constraints on βk and positivity
constraints on ck for k = 1, ..., d.

The variance of the regression term in (3.4) is of order ck/δ
where ck is of order the mean (or median) count of the k-th counting
process. For dimensional consistency the penalty parameter must
have the units of ck/δ. So we can replace the penalty parameter
λk in (3.4) by λock/δ where λo is nondimensional. We then have
only to choose one tuning parameter λo. This is a crucial feature to
make the least squares criterion workable in the non-standard point
process setting.

Equation (3.4) is separable in the dimension d which allows the
minimization to be performed as d separate optimizations for the
criterion

Jk(βk) = ‖yk −Xkβk‖2 + λkΣdj=1I(‖βkj‖ 6= 0) (3.5)

3.2. Cyclic Descent Minimization

We propose a cyclic descent approach to minimize (3.5). In step
1, we minimize (3.5) with respect to βk1 with coefficient groups
βkj , j = 2, ..., d fixed at their current value. In step r, we min-
imize (3.5) with respect to βkr with coefficient groups βkj , j =
{1, ..., d}\{r} fixed and so on. An additional step is also needed
to estimate the background rates ck.

For the r-th step, we can rewrite (3.5) in the alternative form

Jk(βkr) = ‖vk,−r −Xkrβkr‖2 + λkΣj 6=rIkj + λkIkr (3.6)

where vk,−r = yk − Σj 6=rXkjβkj and Ikj = I(‖βkj‖ 6= 0).
We assume without loss of generality thatXk is group orthonor-

mal (ON), that is XT
kjXkj = I, j = 1, ..., d. If Xkj is not ON we

rewrite

Xkjβkj = [Xkj(X
T
kjXkj)

− 1
2 ][(XT

kjXkj)
1
2 βkj ] = X̄kj β̄kj

where now X̄kj is ON. Once the optimization is completed we com-
pute βkj = (XT

kjXkj)
− 1

2 β̄kj .
Continuing, since a multiplication by XT

kr in the first term in
(3.6) preserves the norm, (3.6) can be rewritten as

Jk(βkr) = ‖zkr − βkr‖2 + λkIkr (3.7)

where zkr = XT
krvk,−r and the terms that do not depend on βkr

have been dropped. The minimizer of (3.7) is [21]

β
(i)
kr = z

(i−1)
kr I(‖z(i−1)

kr ‖ ≥
√
λk) (3.8)

After step d we obtain ck > 0 using the multiplicative update

c
(i)
k = c

(i−1)
k

δ(1T e
(i−1)
k )+

Tc
(i−1)
k + λo

2
Σdj=1Ikj

(3.9)
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where e(i−1)
k = v

(i−1)
k + c

(i−1)
k 1 and (x)+ = max(ε, x) for a

positive number ε� 1.
The βk-update step (3.8) for r = 1, ..., d and ck-update step

(3.9) can be solved iteratively until convergence.

3.3. Computational Details

Xk, k = 1, ..., d are known and need to be computed only once. The
system identification involves d separate optimizations which can be
done concurrently.

Note that in (3.7), zkr = XT
krvk,−r = XT

kr(vk + Xkrβkr) =
XT
krvk + βkr = γkr + βkr . Then, (3.8) becomes

β
(i)
kr = (γ

(i−1)
kr + β

(i−1)
kr )I(‖(γ(i−1)

kr + β
(i−1)
kr )‖ ≥

√
λk)

For a given k and starting values of ck, βk, the algorithm pro-
ceeds in a cyclic descent fashion to update βk and ck. A stopping
criterion such as |Jk(β

(i)
k )− Jk(β

(i−1)
k )| < α f or some fixed posi-

tive number α� 1 can be used.

3.4. Convergence

The analysis of convergence of the algorithm is non-trivial and will
be pursued elsewhere. The modification of the algorithm from a clas-
sic l1 penalized least squares problem to one where one paprameter,
c, is not penalized means that the whole problem of convergence
would have to be revisited from scratch. That will need a whole pa-
per by itself. As indicated in the data analysis section we have not
experienced convergence problems.

4. DATA ANALYSIS

We analyze genomic data from a study [22] to identify causal inter-
actions in transcriptional regulatory networks (TRNs) in embryonic
stem cells. The data are the co-ordinates of the binding sites of 13
TFs and 2 TRs.

We show a comparison of the l0-LS and l1-LS [11] algorithms.
We confirm using point process data what [9, 21] have already
demonstrated using analog data; namely the superiority of l0-LS
over the l1-LS.

The point process data are obtained from chromosome 1 follow-
ing the approach in [3].

(a) We set δ = 100 base pairs.

(b) Transcription elements with fewer than 100 counts were
dropped.

A raster plot of the downstream occurrences of 12 TFs and 1 TR
in chromosome 1 is shown in Fig. 1.

We use a standard least squares solution under non-negativity
constraints1 in two ways. Firstly, to initialize the iterations; secondly
to scale the l0-LS and l1-LS criteria by the standard least squares
criterion. The scaled criteria are denoted by Ĵ0 and Ĵ1 respectively
and the scaled criterion iterates are denoted by Ĵ(i)

. . The stopping
criterion is |Ĵ(i)

. − Ĵ(i−1)
. | < α with threshold value α = 10−4.

In order to compare the two algorithms:

(a) we expand the HIR gk,j(.), k, j = 1, ..., d in Laguerre poly-
nomials with p = 2 terms;

1Positivity of the stochastic intensity function is guaranteed with βk ≥ 0
and ck > 0. Negative entries of βk are set to zero and a negative ck value is
set to a small positive number.

(b) the βkj,o and λo parameters are determined jointly using the
Bayesian Information Criterion (BIC).

The BIC heat maps of λo vs. βkj,o for l0-LS and l1-LS are
shown in Fig. 2 and Fig. 3 respectively. Using the BIC minimizer in
each case the Ĵ0 and Ĵ1 iterates are shown Fig. 4.

4.1. Discussion of Results

We find that the BIC minimizer for the l0-LS method is (λo, βkj,o) =
(9.5, 100) and for the l1-LS method is (λo, βkj,o) = (57, 80). We
can clearly see from Fig. 4 that the l0-LS reduces the criterion more
than the l1-LS. An interesting feature is the oscillatory behaviour
before flattening. This occurs when some of the starting values of
βk are zero. With non-zero starting values the scaled criterion drops
monotonically before flattening.

The TRN constructed using the l0-LS algorithm (shown in
Fig. 5) has 62 links (≡ 13 + 2 × 62 = 137 parameters). The 5
TFs: Oct4, Zfx, c-Myc, n-Myc and STAT3 do not have self-exciting
links which have been omitted for the remaining TFs to avoid clut-
ter. There are 15 bi-directional interactions. These are indicated by
undirected links. We find that Fig. 5 shares greater similarity with
the network constructed from experimental study [22] compared
to the TRN with 99 links (≡ 13 + 2 × 99 = 211 parameters)
constructed using the l1-LS algorithm [10].

[22] found that suz12 did not show strong association with any
of the TFs. The links connecting suz12 in Fig. 5 are possibly weak
interactions with the TFs. [22] identified 2 clusters with strong as-
sociation within the clusters. The first cluster includes Nanog, Oct4,
Sox2 and STAT3 while the second cluster includes c-Myc, n-Myc,
Zfx and E2f1. The experimental finding is consistent with our anal-
ysis with one major difference. The study finds strong association
Sox↔Oct4 and Sox2→Nanog. Since the study infers interactions
in a pairwise manner it is not enough to conclude the existence of a
direct link. Our analysis suggests that the interaction is most likely
mediated via E2f1 and the clusters are not as isolated as suggested
in [22].
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Fig. 1. Raster Plot of Downstream Occurrences of 12 TF and 1 TR
in Chromosome 1.

5. CONCLUSIONS

In this paper we have developed for the first time a sparse multivari-
ate point process network identification method based on a vector
or group l0-norm penalty. This is not a minor modfication of our
previous l1 based methods; the nonconvexity required a complete
redesign of the algorithm. A BIC based tuning parameter selection
method was developed. We presented a cyclic descent algorithm
that guarantees positivity of the point process stochastic intensity
function. We have found the cyclic descent approach robust in the
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high-dimensional setting and have demonstrated empirically that our
proposed algorithm has good convergence rate. Based on this an
efficient method for topology identification of interacting Hawkes
processes has been developed. The algorithm was tested on some
genomic data relating to mouse embryonic stem cells to reconstruct
the transcriptional regulatory network (TRN). A comparison of re-
sults with a corresponding sparsity method based on the l1-norm has
shown the superiority of the proposed l0 algorithm for constructing
a sparser TRN.
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Fig. 4. Scaled Criterion Iterates of the l0-LS and l1-LS.

Esrrb

Nanog

Oct4Sox2

CTCF

E2f1
Tcfcp2l1

Zfx

Klf4

c-Myc

n-Myc

STAT3

suz12

Fig. 5. TRN of the Mouse Embryonic Stem Cells Constructed using
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