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ABSTRACT
We propose a convolutional recurrent sparse auto-encoder
model. The model consists of a sparse encoder, which is a
convolutional extension of the learned ISTA (LISTA) method,
and a linear convolutional decoder. Our strategy offers a sim-
ple strategy for learning a task-driven sparse convolutional
dictionary (CD), and producing an approximate convolutional
sparse code (CSC) over the learned dictionary. We trained
the model to minimize reconstruction loss via gradient de-
cent with back-propagation and have achieved competitve
results to KSVD image denoising and to leading CSC meth-
ods in image inpainting requiring only a small fraction of
their runtime.

Index Terms— Sparse Coding, ISTA, LISTA, Convolu-
tional Sparse Coding, Neural networks.

1. INTRODUCTION

Sparse coding (SC) is a powerful and popular tool used in a
variety of applications from classification and feature extrac-
tion, to signal processing tasks such as enhancement, super-
resolution, etc. A classical approach to use SC with a signal
is to split it into segments (or patches), and solve for each

min ||z||0 s.t. x = Dz, (1)

where z ∈ Rm is the sparse representation of the (column
stacked) patch x ∈ Rn in the dictionary D ∈ Rn×m. There
are two painful points in this approach: (i) performing SC
over all the patches tends to be a slow process; and (ii) learn-
ing a dictionary over each segment independently loses spa-
tial information outside it such as shift-invariance in images.

One prominent approach for addressing the first point is
using approximate sparse coding models such as the learned
iterative shrinkage and thresholding algorithm (LISTA) [1].
LISTA is a recurrent neural network designed to mimic ISTA
[2], which is an iterative algorithm for approximating the so-
lution of (1). As to the second point, one may impose an
additional prior on the learned dictionary such as being con-
volutional, i.e., a concatenation of Toeplitz matrices. In this
case each element (known also as atom) of the dictionary is
learned based on the whole signal. Moreover, the resulting
dictionary is shift-invariant due to it being convolutional.
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In this paper, we introduce a learning method for task
driven CD learning. We design a convolutional neural net-
work that both learns the SC of a family of signals and their
CSCs. We demonstrate the efficiency of our new approach in
the tasks of image denoising and inpainting.

2. THE SPARSE CODING PROBLEM

2.1. Sparse coding and ISTA

Solving (1) directly is a combinatorial problem, thus, its
complexity grows exponentially with m. To resolve this de-
ficiency, many approximation strategies have been developed
for solving (1). A popular one relaxes the `0 pseudo-norm
using the `1 norm yielding (the unconstrained form):

arg min
D,z

1

2
||x−Dz||22 + λ||z||1. (2)

A popular technique to minimize (2) is the ISTA [2] iteration:

zk+1 = Sλ/L(zk +
1

L
DT (Dx− zk)), (3)

where L ≤ σmax(DTD), σmax(A) is the largest eigenvalue
of A and Sθ(x) is the soft thresholding operator:

Sθ(x) = sign(x) max(|x| − θ, 0). (4)

ISTA iterations are stopped when a defined convergence cri-
terion is satisfied.

2.2. Learned ISTA (LISTA)

In approximate SC, one may build a non-linear differentiable
encoder that can be trained to produce quick approximate SC
of a given signal. In [1], an ISTA like recurrent network de-
noted by LISTA is introduced. By rewriting (3) as

zk+1 = Sλ/L((I−DTD)zk + DTx), (5)

LISTA can be derived by substituting in (5) We ∈ Rm×n for
DT , S ∈ Rm×m for I − 1

LD
TD and θ ∈ Rm+ for λ

L (using
a different threshold value for each entry instead of a single
threshold for all of them [3]). Thus, LISTA iteration reads:

z0 = 0, k = 0..K − 1

zk+1 = Sθ(Szk + Wex)

zLISTA = zK ,

(6)
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where K is the number of LISTA iterations. The parameters
We, S and θ are learned by minimizing:

L =
1

2
||z∗ − zLISTA||22, (7)

where z∗ is either the optimal SC of the input signal (if attain-
able) or the ISTA final solution after its convergence.

There have been lots of work on LISTA like architectures.
In [3], a LISTA auto-encoder is introduced. Rather than train-
ing to approximate the optimal SC, LISTA is trained directly
to minimize the optimization objective (2) instead of (7). A
discriminative non-negative version of LISTA is introduced
in [4]. It contains a decoder that reconstructs the approxi-
mate SC back to the input signal and a classification unit that
receives the approximate SC as an input. Thus, the model
described in [4] is named discriminative recurrent sparse
auto-encoder and the quality of the produced approximate
SC is quantified by the success of the decoder and classi-
fier. The work in [5] used a cascaded sparse coding network
with LISTA building blocks to fully exploit the sparsity of
an image for the super resolution problem. In [6] and [7], a
theoretical explanation is provided for the reason LISTA like
models are able to accelerate SC iterative solvers.

3. CONVOLUTIONAL SPARSE CODING

The CSC model [8], [9], [10], [11], [12] can be derived from
the classical SC model by substituting matrix multiplication
with the convolution operator:

x =

m−1∑
i=0

di ∗ zi, (8)

where x ∈ Rn1×n2 is the input signal, di ∈ Rs×s a local
convolution filter and zi ∈ Rn1×n2 a sparse feature map of
the convolutional atom di. The `1 minimization problem in
(2) for CSC may be formulated as:

arg min
d,z

1

2
||x−

m−1∑
i=0

di ∗ zi||22 + λ
m−1∑
i=0

||zi||1. (9)

It is important to note that unlike traditional SC, x is not split
into patches (or segments) but rather the CSC is of the full
input signal. The CSC model is inherently spatially invariant,
thus, a learned atom of a specific edge orientation can glob-
ally represent all edges of that orientation in the whole image.
Unlike CSC, in classical SC multiple atoms tend to learn the
same oriented edge for different offsets in space.

Various methods have been proposed for solving (9). The
strategies in [8] and [9] involve transformation to the fre-
quency domain and optimization using Alternating Direction
Method of Multipliers (ADMM). These methods tend to op-
timize over the whole train-set at once. Thus, the whole train-
set must be held in memory while learning the CDC, which of

course limits the train-set size. Moreover, inferring zi from x
is an iterative process that may require a large number of iter-
ations, thus, less suitable for real-time tasks. Work on speed-
ing up the ADMM method for CD learning is done in [5].
In [13], a consensus-based optimization framework has been
proposed that makes CSC tractable on large-scale datasets.
In [14], a thorough performance comparison among differ-
ent CD learning methods is done as well as proposing a new
learning approach. More work on CD learning has been done
in [10] and [15]. In [16], the effect of solving in the fre-
quency domain on boundary artifact is studied, offering dif-
ferent types of solutions.The work in [17] shows the potential
of CSC for image super-resolution.

4. LEARNED CONVOLUTIONAL SPARSE CODING

In order to have computationally efficient CSC model, we ex-
tend the approximate SC model LISTA [1] to the CSC model.
We perform training in an end-to-end task driven fashion. Our
proposed approach shows competitive performance to clas-
sical SC and CSC methods in different tasks but with order
of magnitude fewer computations. Our model is trained via
stochastic gradient-descent, thus, naturally it can learn the CD
over very large datasets without any special adaptations. This
of course helps in learning a CD that can better represent the
space in which the input signals are sampled from.

4.1. Learning Approximate CSC

Due to the linear properties of convolutions and the fact that
CSC model can be thought of as a classical SC model, where
the dictionary Dconv is a concatenation of Toepltiz matrices,
the CSC model can be viewed as a specific case of classical
SC. Thus,the objective in (9) can be formatted to be like (2),
by substituting the general dictionary D with Dconv . Obvi-
ously, naively reformulating CSC model as matrix multipli-
cation is very inefficient both memory-wise because Dconv ∈
R(n1n2)×(n1n2m) and computation wise, as each element of x
is computed with n1n2mmultiply and accumulate operations
(MACs) versus the convolution formation, where only s2m
MACs are needed (realistically assuming s� {n1, n2}).

Thus, instead of using standard LISTA directly on Dconv ,
we reformulate ISTA to the convolutional case and then pro-
pose its LISTA version. ISTA iterations for CSC reads as:

zk+1 = Sλ/L(zk +
1

L
d ? (x− d ∗ zk)), (10)

where d ∈ Rs×s×m is an array of m s × s filters, d ? x =
[flip(d0) ∗ x, ...,flip(dm−1) ∗ x] and d ∗ z =

∑m−1
i=0 di ∗ zi.

The operartion flip(di) reverses the order of entries in di in
both dimensions. Modeling (10) in a similar way to (6) (with
some differences) leads to the convolutional LISTA structure:

zk+1 = Sθ(zk + we ∗ (x−wd ∗ zk)), (11)

2192



where we ∈ Rs×s×c×m, wd ∈ Rs×s×m×c and θ ∈ Rm+
are fully trainable and independent variables and the ? oper-
ation has been replaced with ∗ since we is not constrained
to be the transpose of wd. Note that we have added the
variable c that takes into account having multiple channels
in the original signal (e.g., color channels). In this case, a
convolution of a 3D input tensor with a 4D filter tensor
results with a 3D output tensor defined as output[i, j, k] =∑
di,dj,q input[i+ di, j + dj, q] · filter[di, dj, q, k].

4.2. Learning the CD

When learning a CD, we expect to produce x̂ as close as pos-
sible to x given the approximate CSC (ACSC) produced by
the model described in (11). Thus, we learn the CD by adding
a linear encoder that consists of a filter array d at the end of
the convolutional LISTA iterations. This leads to the follow-
ing network that integrates both the calculation of the CSC
and the application of the dictionary:

z0 = 0, , k = 0 : K − 1

zk+1 = Sθ(zk + we ∗ (x−wd ∗ zk))

zACSC = zK

x̂ = d ∗ zACSC

(12)

4.3. Task driven convolutional sparse coding

This formulation makes it possible to train a sparse induced
auto-encoder, where the encoder learns to produce ACSC and
the decoder learns the correct filters to reconstruct the signal
from the generated ACSC. The whole model is trained via
stochastic gradient decent aiming at minimizing:

L = dist(x, x̂), (13)

where x is the target signal and x̂ is the one calculated in (12).
We tested different types of distance functions and found (15)
to yield best results. Unlike the sparse auto-encoder proposed
in [18], where the encoder is a feed-froward network and spar-
sity is induced via adding sparsity promoting regularization
to the loss function, our model is inherently biased to pro-
duce sparse encoding of its input due to the special design of
its architecture. From a probabilistic point of view, as shown
in [19], sparse auto-encoder can be thought of as a generative
model that has latent variables with a sparsity prior. Thus, the
joint distribution of the model, the output and the CSC is

pmodel(x, z) = pmodel(z)pmodel(x|z). (14)

The soft thresholding operation used in the network encour-
ages pmodel(z) to be large when z is sparse. Thus, when train-
ing our model we found it sufficient to minimize a reconstruc-
tion term representing − log(pmodel(x|z)) without the need
to add a sparsity inducing term to the loss.

Image Proposed ACSC KSVD
Lena 32.11 32.09

House 32.55 32.7
Pepper 30.65 30.89
Couple 30.14 30.05

Fingerprint 27.44 28.48
Boat 30.3 30.37
Hill 30.23 29.5
Man 30.29 29.67

Barbara 28.91 30.57

Table 1: Denoising PSNR results for σn = 20

ACSC CPU ACSC GPU OMP CPU
runtime [sec] 0.81 0.03 4.21

Table 2: Average run time on the image denoising task. OMP
represents the sparse coding step at KSVD denoising [24]

5. EXPERIMENTS

5.1. Learned CSC network parameters

We used our model as specified in (12). We found 3 recurrent
steps to be sufficient for our tasks. The filters used in the ex-
periments have the following dimensions: we ∈ R7×7×1×64,
wd ∈ R7×7×64×1, θ ∈ R1×64

+ , d ∈ R7×7×64×1.
As initialization is important for convergence, wd and d

are initialized with the same random values and we is ini-
tialized with the transposed and flipped filters of 1

10wd. The
factor 1

10 takes into consideration 1
L from (3). We initialized

the threshold θ to 1
10 , thus implicitly initializing λ to 1. We

tested different types of reconstruction loss including stan-
dard `1 and `2 losses. We found the loss function proposed
in [20] to retrieves the best image quality,

L(x, x̂) = α(1−ms ssim(x, x̂))+(1−α)||x− x̂||1, (15)

where ms ssim is the multiscale SSIM loss [21]. Model is
trained with α = 0.8 and the Adam optimizer [22] using its
default parameters [20]. We use PASCAL VOC dataset [23]
due to its large amount of high quality images. Images are
normalized to the range [0 ,1] before being fed to the model.

5.2. Image denoiseing

To test our model for image denoising we have added random
noise to a given original image x producing y = x+ ε, where
σn = 20 and ε ∼ N (0, σ2

n). Table 1 and Fig. 1 show that the
learned CD generalizes well and has a competitive recovery
to KSVD denoising both qualitatively and quantitatively [24].

We show the atoms of the learned CD in Fig. 2. The
learned CD does not have any image specific atoms but rather
a mixture of high pass DCT like and Gabor like filters. Table
2 presents the average run time per image. We used KSVD’s
publicly available code [25]. Our model is faster by an order
of magnitude on a CPU and by two orders on a GPU.
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Fig. 1: Denoising of Lena. From left to right: original, noisy, ACSC denoising,KSVD denoising.

Fig. 2: Convolutional dictionary learned on denoising task
containing 64 7×7 filters with gabor and high-pass structure.

Image Heide et al. [8] Bristow et al. [9] Proposed ACSC
1 28.76 28.36 28.84
2 31.54 30.52 31.95
3 30.59 30.22 30.48
4 27.41 27.45 27.64
5 33.65 32.91 33.81
6 33.03 32.21 33.27
7 28.69 28.25 28.33
8 30.39 30.04 30.23
9 28.07 27.79 28.10

10 31.59 30.57 31.65
11 29.77 29.09 29.60

Table 3: Inpainting PSNR for test-set from [8].

ACSC CPU ACSC GPU [8] CPU
runtime [sec] 0.6 0.023 163

Table 4: Average runtime on image inpainting.

Fig. 3: Inpainting of test image #10 from test-set in [8] after
local contrast normalization. Left: ACSC. Right: Heide et al.

5.3. Image inpainting

We further test our model on the inpainting problem, in which
y = M � x, where � is as an element wise multiplication
operator and M is a binary mask such that y contains only
part of the pixels in x. Rewriting (8) while taking M into
consideration, we have

y = M�D ∗ z. (16)

Thus, (5) becomes,

zk+1 = Sλ/L(zk +
1

L
d ? (M� (x− d ∗ zk))). (17)

The ACSC version of (17) is given by

zk+1 = Sθ(zk + we ∗ (M� (x−wd ∗ zk))). (18)

In our experiment M(i, j) ∼ Ber(0.5), thus, we randomly
sample half of the input pixels. The objective is to reconstruct
x. We took the pre-trained ACSC network of the denoising
task, plugged in it M to be the form of (18), and optimized
it for the inpainting task over the PASCAL VOC [23] dataset.
We compare our inpainting results to [8] over the same test
images used there. The image numbering convention is con-
sistent to [8]. All test images are preprocessed with local con-
trast as in [8]. Table. 3 shows that our model produces com-
petitive results to the ones of [8] and [9] . Notice in Fig. 3
that our model is able to reconstruct the finer details of the
road that are lost in [8]. The main advantage of the proposed
approach as can be seen in Table 4 is its significant speed-up
in running time (by more than three orders of magnitude). 1

6. CONCLUSION

Approximate convolutional sparse coding as proposed in this
work is a powerful tool. It combines both the computational
capabilities and approximation power of convolutional neural
networks and the strong theory of sparse coding. We demon-
strated the efficiency of this strategy both in the tasks of image
denoising and inpainting.

1We compare only to the runtime of [8] as no code was available for [9].
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