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ABSTRACT
This paper deals with the identifiability of joint independent sub-
space analysis of real-valued Gaussian stationary data with uncorre-
lated samples. This model is not identifiable when each mixture is
considered individually. Algebraically, this model amounts to cou-
pled block decomposition of several matrices. In previous work, we
showed that if all the cross-correlations in this model were square
matrices, the model was generally identifiable. In this paper, we
show that this does not necessarily hold when the cross-correlation
matrices are rectangular. In this current contribution, we first show
that, in certain cases, the balance of degrees of freedom (d.o.f.) be-
tween model and observations does not allow identifiability; this sit-
uation never occurs in the square case. Second, we explain why for
certain block sizes, even if the balance of d.o.f. seems adequate, the
model is never identifiable.

Index Terms— Blind source separation, coupled decomposi-
tions, low-rank approximation, uniqueness, identifiability

1. INTRODUCTION

This theoretical paper deals with certain aspects of the identifiabil-
ity of joint independent subspace analysis (JISA) [1, 2, 3]. JISA is
a recently-proposed model that extends independent subspace anal-
ysis (ISA) (e.g., [4, 5]) by exploiting statistical links among latent
multivariate random processes in several ISA problems. Another
way to look at JISA is as a variant of independent vector analy-
sis (IVA) [6] in which the random processes within each mixture
are possibly multivariate. Both ISA and IVA are themselves exten-
sions of independent component analysis (ICA) [7]. As such, JISA
is a very general framework that is able to exploit any of the types
of diversity as in single-mixture ICA, such as complex-valued data,
sample non-stationarity and/or dependence, and higher-order statis-
tics (HOS), to name a few [1, 8, 3]. Naturally, each type of diver-
sity will further enhance identifiability (e.g., [9, 10]). Accordingly,
the algebraic formulations corresponding to these models are more
elaborate (e.g., [1, Section VI],[8]). In addition, JISA inherits the
enhanced identifiability, interpretability, and versatility of IVA with
respect to (w.r.t.) ICA (e.g., [11, 12, 13, 14, 15, 16]). These proper-
ties make JISA a potentially useful tool in various applications.

In this paper, however, our focus is on a different aspect, of un-
derstanding the added value of the link among datasets w.r.t. an en-
semble of individual unrelated ISA problems. For this aim, we focus
on the minimal JISA model that provides such insights. Namely,
JISA of real-valued Gaussian stationary data with uncorrelated sam-
ples. As shown, e.g., in [17], this model amounts to coupled block
decomposition (CBD) of an ensemble of matrices. This model does
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not exploit any of the additional single-set types of diversity that we
mentioned earlier. One can readily verify that in this case, each indi-
vidual ISA mixture is not identifiable (see also Section 2.2). There-
fore, this minimal model allows us to isolate the contribution of the
multiset diversity [18].

IVA identifiability under these minimal model assumptions was
discussed in [11, 12, 13]. These results, along with, e.g., [19], pro-
vide evidence that coupled decompositions can achieve uniqueness
and identifiability that exceed those of their underlying individual
building blocks. Recently, coupled decompositions have been at-
tracting increasing attention as a means to analyse more elaborate
linked datasets and achieve data fusion in various applications; see,
e.g., [18, 20, 21] and references therein. Therefore, understanding
the properties of coupled decomposition, their advantages and dis-
advantages, is a matter of onging research.

In previous work, we provided numerical [1, 17] and theoreti-
cal [22] evidence that this minimal JISA model can be identifiable.
More specifically, we have proven that in the special case where
the non-zero cross-correlation matrices are square and nonsingular
(which implies that all blocks in the CBD are square), and the mix-
ing matrices have full column rank, JISA is generally identifiable,
except for very special cases in which the covariance profiles of two
independent sources belong to the same equivalence class. In this
paper, we do not impose this constraint. Instead, we allow the non-
zero cross-correlation matrices to be rectangular, as long as they are
full-rank. In this current contribution, we show that this relaxation
results in a new phenomenon: for certain block dimensions, the CBD
is never unique, which implies that the corresponding JISA model is
never identifiable. Furthermore, this phenomenon occurs even if the
balance of degrees of freedom (d.o.f.) between model unknowns and
constraints imposed by the observations seems adequate. The goal
of this paper is to characterize these cases, and to explain them.

1.1. Notations and Conventions

Scalars, column vectors, and matrices, are denoted a, a, and A, re-
spectively. The direct product of two matrices, A and B, is denoted
A⊕B , [A 0

0 B ]. Iα, 1β , and 0γ×δ denote an α×α identity matrix,
an all-ones β × 1 vector, and a γ × δ all-zeros matrix, respectively.
·> denotes transpose. A−[k] and A−[k]> stand for (A[k])−1 and
(A−[k])>, respectively. The Khatri-Rao product for partitioned ma-
trices [23] is defined as

A�B ,

A11 ⊗B11 A12 ⊗B12 · · ·
A21 ⊗B21 A22 ⊗B22 · · ·

...
...

. . .

 (1)

where Aij and Bij denote the (i, j)th mi × nj and pi × qj blocks
of partitioned matrices A and B, respectively, and where Aij⊗Bij

and A�B aremipi×njqj and (
∑
mipi)×(

∑
njqj), respectively.

2186978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



2. BACKGROUND AND PROBLEM FORMULATION

2.1. JISA Model

Consider an ensemble of K ≥ 2 datasets, modeled as

x[k] = A[k]s[k] , k = 1, . . . ,K (2a)

=

R∑
i=1

A
[k]
i s

[k]
i (2b)

where x[k] ∈ RI
[k]×1 is a random vector representing the obser-

vations at dataset k, and R ≥ 2 is the number of statistically in-
dependent contributions in each dataset. The multivariate Gaus-
sian random vectors s[k] = [s

[k]>
1 , . . . , s

[k]>
R ]> ∈ RI

[k]×1 and

s
[k]
i ∈ Rm

[k]
i ×1 in dataset k have non-degenerate probability den-

sity function (pdf)s that cannot be written as a product of several
non-trivial pdfs. These random vectors generate multivariate Gaus-
sian stationary random processes with uncorrelated samples. In ad-
dition, the block (partitioned) matrix A[k] = [A

[k]
1 | · · · |A

[k]
R ] ∈

RI
[k]×(

∑R
i=1m

[k]
i ) is nonsingular (in fact, the model may be iden-

tifiable even if this assumption is relaxed; however, this assump-

tion simplifies our discussion), where A
[k]
i ∈ RI

[k]×m[k]
i . The

dimensions of these latent variables satisfy m
[k]
i ≥ 1, where

m[k] = [m
[k]
1 , . . . ,m

[k]
R ]>, mi = [m

[1]
i , . . . ,m

[K]
i ]>, and I [k] =∑R

i=1m
[k]
i = m[k]>1R.

In the JISA model that we consider in this paper, the cross-
correlation between s

[k]
i and s

[l]
j , where 1 ≤ i, j ≤ R, 1 ≤ k, l ≤

K, satisfies

S
[k,l]
ij , E{s[k]i s

[l]>
j } =

{
S
[k,l]
ii i = j
0 i 6= j

(3)

where S
[k,l]
ii ∈ Rm

[k]
i ×m

[l]
i are full-rank ∀i, k, l. The m[k]

i × m
[l]
j

cross-correlation matrices S
[k,l]
ij can be collected in the (k, l)th block

of the m>i 1K ×m>j 1K matrix

Sij ,


S
[1,1]
ij · · · S

[K,1]
ij

...
...

S
[K,1]
ij · · · S

[K,K]
ij

 =

{
Sii i = j
0 i 6= j

(4)

as well as in the (i, j)th block of the m[k]>1R ×m[l]>1R matrix

S[k,l] , E{s[k]s[l]>} = S
[k,l]
11 ⊕ · · · ⊕ S

[k,l]
RR . (5)

Throughout this paper, we assume that Sii and S
[k,k]
ii are positive-

definite ∀i, k. The cross-correlation between observations in
datasets k and l satisfies

X[k,l] , E{x[k]x[l]>} = A[k]S[k,l]A[l]> (6a)

=

R∑
i=1

A
[k]
i S

[k,l]
ii A

[l]>
i ∀k, l (6b)

where the second equality in (6a) is due to (2a), and the transition
to (6b) is due to (5). Since A[k] are nonsingular ∀k, (6) can be
written as

A−[k]X[k,l]A−[l]> = S[k,l] =

R⊕
i=1

S
[k,l]
ii ∀k, l (7)

where the last equality is due to (5). We refer to the decomposition
in (6b) and (7), of all the matrices in {X[k,l]}Kk,l=1 at once, as CBD.

It follows from (2b) that one cannot distinguish between the
pairs (A

[k]
i , s

[k]
i ) and (A

[k]
i Z

−[k]
ii ,Z

[k]
ii s

[k]
i ), where Z

[k]
ii is an ar-

bitrary nonsingular m[k]
i × m

[k]
i matrix. However, given x

[k]
i ,

A
[k]
i s

[k]
i ∀i, k, we can rewrite (2) as x[k] =

∑R
i=1 x

[k]
i ∀k, which

does not suffer from this ambiguity. Therefore, given a sequence of
samples drawn from {x[k]}Kk=1, and given {m[k]

i }
R , K
i=1,k=1, we de-

fine the problem associated with this model as obtaining estimates
of x1, . . . ,xR that are as statistically independent (uncorrelated) as
possible, where xi , [x

[1]>
i , . . . ,x

[K]>
i ]> ∀i. Accordingly, we

propose the following definition for JISA identifiability: if all (un-
ordered) sets of maximally independent estimates of x1, . . . ,xR that
satisfy the JISA model assumptions are identical, we say that the
JISA model is identifiable.

Similarly, each of the R summands in (6b) satisfies

A
[k]
i S

[k,l]
ii A

[l]>
i = (A

[k]
i Z

−[k]
ii )(Z

[k]
ii S

[k,l]
ii Z

[l]>
ii )(Z

−[l]>
ii A

[l]>
i ) . (8)

In analogy to our definition of JISA identifiability, we now state
the algebraic counterpart for CBD uniqueness: if any choice
of {A[k]

i }
R , K
i=1,k=1 and {S[k,l]

ii }
K
k,l=1 that satisfy (6) for fixed

{X[k,l]}Kk,l=1 yields the same R summands ∀k, l, we say that the
decomposition in (6) and (7) is unique.

If the JISA model satisfies all the above model assumptions, then
the cross-correlations {X[k,l]}Kk,l=1 are sufficient statistics for esti-
mating the model’s parameters [1]. In this case, the uniqueness of
the CBD problem in (6) and (7) amounts to JISA identifiability.

2.2. Degrees of Freedom

In our JISA model of interest, the model unknowns consists of
{A[k]}Kk=1 and {Sii}Ri=1. These matrices provide

Nmodel =

K∑
k=1

(
(

R∑
i=1

m
[k]
i )2︸ ︷︷ ︸

due to A[k]

−
R∑
i=1

m
2[k]
i︸ ︷︷ ︸

due to Z
[k]
ii

)

+
1

2

R∑
i=1

(
(

K∑
k=1

m
[k]
i )
(
(

K∑
k=1

m
[k]
i ) + 1

)
︸ ︷︷ ︸

due to Sii

)
(9)

free scalar parameters. In (9), we take into account the model’s
unavoidable inherent ambiguities (8). The data (i.e., observa-
tions, measurements, etc.) are represented by {X[k,l]}Kk,l=1,
which can be regarded as the blocks of the covariance matrix of

[x[1]>, . . . ,x[K]>]> ∈ R(
∑R
i=1

∑K
k=1m

[k]
i )×1. Hence, the model

has to fit

Ndata =
1

2

( R∑
i=1

K∑
k=1

m
[k]
i

)(( R∑
i=1

K∑
k=1

m
[k]
i

)
+ 1
)

(10)

scalar constraints. One can readily verify that when K = 1 and
R ≥ 2, Ndata − Nmodel < 0. When Ndata − Nmodel < 0, the num-
ber of constraints provided by the observations is smaller than the
number of unknowns in the model, and thus the model is not identi-
fiable. Nonnegative values of Ndata − Nmodel, on the other hand, do
not guarantee identifiability.
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2.3. Problem Formulation

In previous work [1, 17, 22], we considered the case of square non-
singular S

[k,l]
ii ∀i, k, l, which implies m[k]

i = mi ∀k. In this case,
the balance of d.o.f. is always nonnegative. Given these assumptions,
we defined in [22] a subspace associated with signal i as reducible
if and only if (iff) there exist K nonsingular matrices (transforma-

tions) T
[k]
ii such that T

[k]
ii S

[k,l]
ii T

[l]>
ii =

[
S
[k,l]
i1i1

0

0
α[k]×β[l]

S
[k,l]
i2i2

]
∀k, l,

where α[k] and β[k] , mi − α[k] are positive integers ∀k. In this
case, we say that Sii is reducible. Otherwise, Sii is said to be ir-
reducible. Assuming irreducibility ∀i, we showed in [22] that JISA
was generally identifiable, that is, except for very special cases in
which, for some i 6= j, mi = mj and the blocks of Sii and Sjj
satisfy a certain equivalence relation. In other words, mi 6= mj

guarantees identifiability.
In this paper, we consider a more relaxed scenario, of rectangu-

lar full-rank S
[k,l]
ii . We show that in this case, different dimensions

for (i, j) do not guarantee identifiability. Namely, for certain values
of {m[k]

i }
R , K
i=1,k=1, the d.o.f. balance is negative. Then, in certain

other cases, the balance is nonnegative but the model is never identi-
fiable, regardless of the value of Sii ∀i. The main part of this paper,
in Section 3, is dedicated to explaining this latter phenomenon. Iden-
tifiability of the remaining cases can be obtained using arguments
similar to those in [22], and is beyond the scope of this work.

2.4. Fisher Information Matrix

In [1], we have shown1 that asymptotically, that is, when the number
of samples drawn from the random processes goes to infinity, for
every pair (i, j) with i 6= j, the estimation error of the parameters in
the model that we have just defined is proportional to the inverse of
the symmetric positive semi-definite 2m>i mj × 2m>i mj matrix

H =

[
Sjj � S−1

ii I
I S−1

jj � Sii

]
(11)

(the transition from [1, Equation (32)] to (11) is trivial) where
Sjj � S−1

ii is an m>i mj ×m>i mj matrix whose (k, l)th block has
size m[k]

i m
[k]
j × m

[l]
i m

[l]
j . Hence, H is related to the Fisher infor-

mation matrix (for further details, see [1]). Matrix H is generally
different for each pair of (i, j). Matrix H is well-defined, because it
was derived based on the assumption that Sii and Sjj were positive-
definite covariance matrices. If H is singular for at least one pair of
i 6= j, we say that the model is not identifiable. Consequently, the
question of identifiability boils down to characterizing the singular
points of H for all pairs of (i, j). In [22], we have shown that H is
singular iff the following system of coupled matrix equations,

S̃
[k,l]
ii L[l] = L[k]S̃

[k,l]
jj k, l = 1, . . . ,K (12)

has non-zero solutions, that is, iff there exist {L[k]}Kk=1 not all zero
that satisfy (12), where L[k] are m[k]

i ×m
[k]
j matrices, and

S̃
[k,l]
ii = (S

[k,k]
ii )−

1
2 S

[k,l]
ii (S

[l,l]
ii )−

1
2
> ∀k, l (13)

are normalized versions of Sii satisfying S̃
[k,k]
ii = I

m
[k]
i

∀k, as well
as all our other model assumptions. We shall use this formulation in
our analysis in Section 3.

1The generalization of all the results in [1] from m
[k]
i = mi ∀k to

m
[k]
i 6= m

[l]
i for l 6= k is trivial and straightforward.

3. MAIN RESULT: NON-IDENTIFIABLE CASES

In this section, we present our claims using a case study. Let
mi = [1, 1, α]>, mj = [1, 1, β]>. This example corresponds to
K = 3 datasets, with block dimensions given by m[1]

i = m
[2]
i =

m
[1]
j = m

[2]
j = 1, m[3]

i = α, m[3]
j = β, for some pair (i, j),

1 ≤ i, j ≤ R, i 6= j, where the total number of latent low-rank
terms in each dataset is R ≥ 2. Substituting these parameters in (9)
and (10), the balance of d.o.f. between model unknowns and obser-
vational constraints is

Ndata −Nmodel = 2α+ 2β − αβ . (14)

Specific values of (14) for 1 ≤ α, β ≤ 7 are given in Table 1. For
this model, depending on α and β, we identify three types of iden-
tifiability, as we now explain. The negative values in Table 1 cor-
respond to non-identifiable cases. The non-highlighted nonnegative
entries in Table 1 correspond to cases that are generally identifiable.
The highlighted entries in Table 1 correspond to cases that are never
identifiable although their d.o.f. balance is nonnegative. The aim of
this paper is to explain this type of non-identifiability.

Table 1. Ndata−Nmodel = 2α+2β−αβ. The highlighted cells corre-
spond to cases that are never identifiable although their d.o.f. balance
is nonnegative.

α
β 1 2 3 4 5 6 7

1 3 4 5 6 7 8 9
2 4 4 4 4 4 4 4
3 5 4 3 2 1 0 -1
4 6 4 2 0 -2 -4 -6
5 7 4 1 -2 -5 -8 -11
6 8 4 0 -4 -8 -12 -16
7 9 4 -1 -6 -11 -16 -21

Before going into our theoretical analysis, we point out that each
of these claims for (non)identifiability can be validated numerically
by generating arbitrary Sii and Sjj that satisfy the model assump-
tions of Section 2 and looking at the eigenvalues of H.

In a first step (Section 3.1), we show that given these values of α
and β, one can always write S̃ii and S̃jj as a direct sum of a smaller
square matrix and an identity matrix. In a second step (Section 3.2),
we show that this structure is always associated with a singular H.
We discuss and explain these results in Section 3.3.

3.1. First Step

The main idea is that the arbitrary matrices Z
[k]
ii , defined in (8), act

as transformations (see also [24]). Let

Z
[k]
ii , Q

−[k]
ii (S

[k,k]
ii )−

1
2 ∀i, k (15)

where Q
[k]
ii is a nonsingular m[k]

i ×m
[k]
i matrix ∀i, k. Then

Z
[k]
ii S

[k,l]
ii Z

[l]>
ii = Q

−[k]
ii (S

[k,k]
ii )−

1
2 S

[k,l]
ii (S

[l,l]
ii )−

1
2
>Q
−[l]>
ii (16a)

= Q
−[k]
ii S̃

[k,l]
ii Q

−[l]>
ii ∀i, k, l (16b)

where the last transition is due to (13). For the sake of simplicity, we
exemplify using α = 3 = β. However, the same arguments apply
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to all pairs of (α, β) corresponding to highlighted entries in Table 1.
In this example, S̃

[3,1]
ii and S̃

[3,2]
ii are 3× 1 vectors; S̃

[2,1]
ii , Q

[1]
ii , and

Q
[2]
ii are nonzero scalars, and Q

[3]
ii is 3 × 3. Hence, the ensemble

of transformation {Q[k]
ii }

K
k=1 on {S̃[k,l]

ii }
K
k,l on the right-hand side

(RHS) of (16b) can be written as

(

K⊕
k=1

Q−[k])S̃ii(

K⊕
k=1

Q−[k])> =

 q
−[1]
ii 0 0

0 q
−[2]
ii 0

0 0 Q
−[3]
ii


 1 s̃

[2,1]
ii s̃

[3,1]>
ii

s̃
[2,1]
ii 1 s̃

[3,2]>
ii

s̃
[3,1]
ii s̃

[3,2]
ii I3


q
−[1]
ii 0 0

0 q
−[2]
ii 0

0 0 Q
−[3]
ii


>

(17)

The key point is that the operation of Q
−[3]
ii on the lower-left 3 × 2

submatrix of S̃ii (highlighted in (17)) can be interpreted as a QR
decomposition:

[
s̃
[3,1]
ii s̃

[3,2]
ii

]
= Q

[3]
ii R, where R has an upper

triangular structure

∗ ∗
0 ∗
0 0

, “∗” stands for any unspecified non-

zero scalar value, and Q
[3]
ii is unitary. The nonnegative scalars q[1]ii

and q[2]ii do not have any effect on the structure. We further note that
Q
−[3]
ii S̃

[3]
ii Q

−[3]>
ii = I3 for any unitary Q

[3]
ii . If we choose q[1]ii =

1 = q
[2]
ii , it follows that one can always transform Sii to a structure

S̃ii =


1 ∗ ∗ 0 0
∗ 1 ∗ ∗ 0
∗ ∗ 1 0 0
0 ∗ 0 1 0
0 0 0 0 1

 . (18)

via (15). The same procedure can be applied to Sjj . Summarizing
our derivations so far, we have shown that given mi = (1, 1, 3) =
mj , both Sii and Sjj can always be assumed to have the structure
in (18).

Similar arguments can now applied to the other highlighted en-
tries in Table 1. We now note that each of these highlighted cells
corresponds to 2 = m

[1]
i +m

[2]
i < m

[3]
i = α and 2 = m

[1]
j +m

[2]
j <

m
[3]
j = β. Hence, the QR decomposition of the lower-left m[3]

i × 2

submatrix of S̃ii yields an upper-triangular matrix R with m[3]
i − 2

rows of zeros at the bottom. Consequently, S̃ii can always be written
as a direct sum of an order- (

∑2
k=1m

[k]
i + 2) matrix and I

m
[3]
i −2

.
The same holds for j. This concludes the first step of our case study.

3.2. Second Step

We now explain why a structure that is a direct sum of a square ma-
trix and the identity, for both i and j, implies that the corresponding
H is always singular. In our example, one can readily verify that for
any S̃ii and S̃jj with the structure in (18), the system of equations

in (12) holds for any L[1] = 0 = L[2] and L[3] =

0 0 0
0 0 0
0 0 ξ

 6= 0,

ξ 6= 0. As explained in Section 2.4, a non-zero solution to (12) corre-
sponds to a singular H, and thus the overall JISA model is not iden-
tifiable. This concludes our proof that our minimal JISA model with
mi = mj = (1, 1, 3), j 6= i, is never identifiable. As for the other
highlighted values in Table 1, one can readily verify that given the

direct-sum structure explained in Section 3.1 for both S̃ii and S̃jj ,
there always exists a non-zero solution to (12), with L[1] = 0 = L[2]

and L[3] = 02×3⊕Ξ, where Ξ is an arbitrary (m
[3]
i −2)×(m

[3]
j −2)

matrix.

3.3. Discussion

A question that may arise is whether the fact that the effective form
of S̃ii and S̃jj contains zeros changes the balance of d.o.f., and if so,
can this explain the non-identifiability. To answer this question, we
point out that the zeros in (18) can affect only Nmodel, by decreasing
the number of model unknowns. Hence, the value of Ndata −Nmodel

can only increase. Therefore, this cannot serve as an alternative ex-
planation to non-identifiability.

Until now, we ignored the question of reducibility. By observing
the transformed structure in (18), we see that S̃ii does not satisfy
the definition of reducibility in Section 2.3. However, (18) reveals
that the last entry of s

[3]
i is uncorrelated with all other entries of

s
[k]
i ∀k. Hence, s

[3]
i consists of two uncorrelated terms, and is thus

reducible. These results imply that the definition of (ir)reducibility
in Section 2.3 is inadequate for the more general case of JISA with
rectangular blocks. In other words, the new phenomenon is due to a
new and more elaborate type of reducibility that was not considered
in earlier work.

Clearly, this type of reducibility and non-identifiability is not
limited to models with structure given by mi = [1, 1, α]>, mj =
[1, 1, β]>. One can readily verify that this phenomenon occurs
whenever a model has at least one pair of i 6= j for which∑K−1
k=1 m

[k]
i < m

[K]
i , and similarly for j. For example, if mi =

[1, 2, 4]> and mj = [3, 5, 9]>, where Ndata − Nmodel = 21, the
model is not identifiable. Hence, in the general case of rectangu-
lar cross-correlations, having different dimensions for the different
random vectors can result in completely non-identifiable models.
This is in striking contrast to the square case, i.e., m[k]

i = mi and
m

[k]
j = mj ∀k, in which identifiability is guaranteed if mi 6= mj

for any i 6= j.
This type of reducibility and non-identifiability is not a concern

when m[k]
i = mi ∀i, k, because in this case, each S

[k,l]
ii is square

(and nonsingular, by our model assumptions) such that its QR de-
composition yields a nonsingular triangular matrix.

A possible remedy is to use additional types of diversity. If the
samples are piecewise nonstationary, such that there exist at least two
distinct matrices S

[k,l](t)
ii for fixed i, k, l, where t = 1, . . . , T are

indices of disjoint T ≥ 2 sampling intervals, then this type of non-
identifiability cannot occur, in general. The reason is that once a pair
(Q,R) in a QR decomposition is determined for a fixed S

[k,l](t′)
ii ,

this pair will not, in general, satisfy a QR decomposition for a dif-
ferent S

[k,l](t′′)
ii 6= S

[k,l](t′)
ii , t′ 6= t′′. Hence, this result can serve as

a further motivation for exploiting all types of diversity in the data.
To conclude, in this paper, we presented new results on the iden-

tifiability of JISA and CBD, when dependent random processes have
different dimensions. We have shown that while in certain cases
different dimensions guarantee identifiability, in other cases they
can completely destroy it. We explained this by showing that this
setup may be associated with more elaborate types of (ir)reducibility.
These results indicate that while block decompositions carry more
flexibility in representing data, they should be treated with care.
These results also further emphasize that block decompositions can-
not be handled as straightforward extensions of rank-1 methods.
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