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ABSTRACT

Traditional dictionary learning methods are based on quadratic
convex loss function and thus are sensitive to outliers. In this
paper, we propose a generic framework for robust dictionary
learning based on concave losses. We provide results on
composition of concave functions, notably regarding super-
gradient computations, that are key for developing generic
dictionary learning algorithms applicable to smooth and non-
smooth losses. In order to improve identification of outliers,
we introduce an initialization heuristic based on undercom-
plete dictionary learning. Experimental results using syn-
thetic and real data demonstrate that our method is able to
better detect outliers, and thus capable of generating better
dictionaries, outperforming state-of-the-art methods such as
K-SVD and LC-KSVD.

Index Terms— Robust dictionary learning, outlier detec-
tion, concave loss function.

1. INTRODUCTION

Dictionary Learning is an important and widely used tool in
Signal Processing and Computer Vision. Its versatility is well
acknowledged and it can be applied for denoising or for rep-
resentation learning prior to classification [1, 2]. The method
consists in learning a set of overcomplete elements (or atoms)
which are useful for describing examples at hand. In this con-
text, each example is represented as a potentially sparse linear
span of the atoms. Formally, given a data matrix composed
of n elements of dimension d, X ∈ Rd×n and each column
being an example xi, the dictionary learning problem is given
by:

min
D∈Rd×k,A∈Rk×n

1

2

n∑
i=1

‖xi−Dai‖22+ΩD(D)+ΩA(A) (1)

where ΩD and ΩA represent some constraints and/or penal-
ties on the dictionary set D and the matrix coefficient A,
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each column being a linear combination coefficients ai so that
xi ≈ Dai. Typical regularizers are sparsity-inducing penalty
on A, or unit-norm constraint on each dictionary element al-
though a wide variety of penalties can be useful [3, 4, 5].

As depicted by the mathematical formulation of the prob-
lem, the learned dictionary D depends on training examples
{xi}ni=1. However, because of the quadratic loss function in
the data fitting term, D is in addition, very sensitive to outlier
examples. Our goal here is to address the robustness of the
approach to outliers. For this purpose, we consider loss func-
tions that downweight the importance of outliers in X making
the learned dictionary less sensitive to them.

Typical approaches in the literature, that aim at mitigating
influence of outliers, use Frobenius norm or component-wise
`1 norm as data-fitting term instead of the squared-Frobenius
one [6, 7]. Some works propose loss functions such as the `q
function, with q ≤ 1 function or the capped function g(u) =
min(u, ε), for u > 0 [8, 9]. Due to these non-smooth and non-
convex loss function, the resulting dictionary learning prob-
lem is more difficult to solve than the original one given in
Equation (1). As such, authors have developed algorithms
based on an iterative reweighted least-square approaches tai-
lored to the loss function `q or min(u, ε) [8, 9].

Our contribution in this paper is: (i) to introduce a generic
framework for robust dictionary learning by considering as
loss function the composition of the Frobenius norm and
some concave loss functions (our framework encompasses
previously proposed methods while enlarging the set of appli-
cable loss functions); (ii) to propose a generic majorization-
minimization algorithm applicable to concave, smooth or
non-smooth loss functions. Furthermore, because the result-
ing learning problem is non-convex, its solution is sensitive
to initial conditions, hence we propose a novel heuristic for
dictionary initialization that helps in detecting outliers more
efficiently during the learning process.

2. CONCAVE ROBUST DICTIONARY LEARNING

2.1. Framework and Algorithm

In order to robustify the dictionary learning process against
outliers, we need a learning problem that puts less empha-
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sis on examples that are not “correctly” approximated by the
learned dictionary. Hence, we propose the following generic
learning problem:

min
D,A

1

2

∑
i

F (‖xi −Dai‖22) + ΩD(D) + ΩA(A). (2)

where F (•) is a function over R>0. Note that in the se-
quel, we will not focus on the penalty and constraints over
the dictionary elements and coefficients A. Hence, we con-
sider them as the classical unit-norm constraint over dj and
the `1 sparsity-inducing penalty over {ai}.

Concavity of F is crucial for robustness as it helps in
down-weighting influence of large ‖xi−Dai‖2. For instance,
if we set F (•) =

√
•, the above problem is similar to the con-

vex robust dictionary learning proposed by Wang et al. [7].
In order to provide better robustness, our goal is to introduce
a generic form of F that leads to a concave loss with respect
to ‖xi−Dai‖2, instead of a linear, yet concave one as in [7].

In this work, we emphasize robustness by considering F
as the composition of two concave functions F (•) = g(•) ◦√
•, with g a non-decreasing concave function over R>0, such

as those used for sparsity-inducing penalties. Typically, g(•)
can be the q−power, q ≤ 1 function-inducing uq , the log
function log(ε + u), the SCAD function [10], or the capped-
`1 function min(u, ε), or the MCP function [11]. A key prop-
erty on F is that concavity is preserved by the composition of
some specific concave functions as proved by the following
lemma which proof is omitted due to its simplicty.

Lemma 1 Let g be a non-decreasing concave function on
R>0 and h be a concave function on a domain Ω to R>0,
then g◦h is concave. Furthermore, if g is a strictly increasing
function and h strictly concave, then g ◦ h is strictly concave.

In our framework, h is the square-root function with Ω =
R>0. In addition, functions g, such as those given above, are
either a concave or strictly concave functions and are all non-
decreasing, hence F = g ◦ h is concave. Owing to concavity,
for any u0 and u in R>0,

F (u) ≤ F (u0) + F ′(u0)(u− u0)

where F ′(u0) is an element of the superdifferential of F at u0.
As F is concave, the superdifferential is always non-empty
and if F is smooth at u0, then F ′(u0) is simply the gradient
of F at u0. However, since F is a composition of functions,
in a non-smooth case, computing superdifferential is difficult
unless the inner function is a linear function [12]. Next lemma
provides a key result showing that a supergradient of g ◦

√
•

can be simply computed using chain rule because
√
• is a

bijective function on R>0 to R>0 and g is non-decreasing.

Lemma 2 Let g a non-decreasing concave function on R>0

and h a bijective differentiable concave function on a domain
R>0 to R>0, then if g1 is a supergradient of g at z then g1 ·
h′(s) is a supergradient of g ◦h at a point s so that z = h(s).

Algorithm 1 The proposed Robust DL method
Input: Data matrix X ∈ Rd×n, dictionary size k, λ, ε, M .
1: if (k > d) and (use undercomplete initialization) then
2: Initialize D and s with Algorithm 2
3: else
4: random initialization of D, A
5: sj = 1 for j = 1, . . . , n
6: for i = 1 to M do
7: repeat
8: Update D by solving Equation 5
9: for j = 1 to n do

10: aj ← 1
2
||xj −Da||22 + λ

sj
||a||1

11: until convergence
12: for j = 1 to n do
13: update sj according to Equation 4
Output: D, s

Proof As g1 ∈ ∂g(z), we have ∀y, g(y) ≤ g(z)+g1 ·(y−z).
Owing to bijectivity of h, define t and s so that y = h(t) and
z = h(s). In addition, concavity of h gives h(t) − h(s) ≤
h′(s)(t − s) and because g is non-decreasing, g1 ≥ 0. Com-
bining everything, we have g1 · (y−z) = g1 · (h(t)−h(s)) ≤
g1h
′(s)(t− s). Thus ∀t, g(h(t)) ≤ g(h(s)) + g1h

′(s)(t− s)
which concludes the proof since g1 is a supergradient of g at
h(s).

Based on the above majorizing linear function property of
concave functions and because in our case F ′(u0) can easily
be computed, we consider a majorization-minimization ap-
proach for solving Problem (2). Our iterative algorithm con-
sists, at iteration κ, in approximating the concave loss func-
tion F at the current solution Dκ and Aκ and then solve the
resulting approximate problem for D and A. This yields in
solving:

min
D,A

1

2

∑
i

si‖xi −Dai‖22 + ΩD(D) + ΩA(A) (3)

where si = [g ◦
√
• ]′ at Dκ and aκ,i. Since, we have

[g ◦
√
• ]′(u0) =

1

2
√
u0
g′(
√
u0)

weights si can be defined as

si =
g′(‖xi −Dκaκ,i‖2)

2‖xi −Dκaκ,i‖2
. (4)

This definition of si can be nicely interpreted. Indeed, if g
is so that g

′(u)
u becomes small as u increases, examples with

large residual values ‖xi−Dκaκ,i‖2 have less importance in
the learning problem (3) because their corresponding values
si are small.

Note how the composition g ◦
√
• allows us to write the

data fitting term with respect to the squared residual norm
so that at each iteration, the problem (3) to solve is simply a
weighted smooth dictionary learning problem, convex in each
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of its parameters, that can be addressed using off-the-shelf
tools. As such, it can be solved alternatively for D with fixed
A and then for A with fixed D. For fixed A, the optimization
problem is thus:

min
D

1

2

∑
i

‖x̃i −Dãi‖22 + ΩD(D) (5)

where x̃i =
√
sixi and ãi =

√
siai. This problem can

be solved using a proximal gradient algorithm or block-
coordinate descent algorithm as given in Mairal et al. [2]. For
fixed D, the problem is separable in ai and each sub-problem
is equivalent to a Lasso problem with regularization λ

si
.

The above algorithm is generic in the sense that it is appli-
cable to any continuous concave and non-decreasing function
g, even non-smooth ones. This is in constrast with algorithms
proposed in [8, 9] which have been tailored to some specific
functions g. In addition, the convergence in objective value
of the algorithm is guaranteed for any of these g functions,
by the fact that the objective value in Equation 2 decreases at
each iteration while it is obviously lower bounded.

2.2. Heuristic for initialization

The problem we are solving is a non-convex problem and its
solution is thus very sensitive to initialization. The presence
of outliers in the data matrix X magnifies this sensitivity and
increases the need for a proper initialization of si in our it-
erative algorithm based on Equation (3). If we were able to
identify outliers before learning, then we would assign si = 0
to these samples so that they become irrelevant for the dictio-
nary learning problem. However, detecting outliers in a set of
samples is a difficult learning problem by itself [13].

Our initialization heuristic is based on the intuition that if
most examples belong to a linear subspace of Rd while out-
liers live outside this subspace, then these outliers can be bet-
ter identified by using an undercomplete dictionary learning
than an overcomplete one. Indeed, if the sparsity penalty is
weak enough, then an overcomplete dictionary can approxi-
mate well any example leading to a large value of si even for
the outliers.

Hence, if the number of dictionary elements to learn is
larger than the dimension of the problem, we propose to ini-
tialize D and s by learning mini-batches of size b < d of
dictionary atoms using one iteration of Alg. 1 initialized with
si = 1,∀i ∈ [1, . . . , n], a random dictionary and random
weigths A. If there is only a small proportion of outliers,
we make the hypothesis that the learning problem will focus
on dictionary atoms that span a subspace that better approxi-
mates non-outlier samples. Then, as each set of learned mini-
batch dictionary atoms leads to a different error ‖xi−Dai‖2
and thus to different si as defined in Equation 3, we estimate
si as the average si over the number of mini-batches and we
expect si to be small if the i-th example is an outlier. This
initialization strategy is presented in Alg. 2.

Algorithm 2 Undercomplete initialization
Input: Data matrix X, dictionary D ∈ Rd×k , with d < k, number of

atoms in each batch b < k, parameters λ and ε.
1: N ←

⌈
k
b

⌉
{number of batches}

2: s = 0
3: Initialize D = [d1, . . . ,dk] as a zero matrix
4: for i = 0 to (N − 1) do
5: I = indices related to i-th batch
6: D̂, ŝ← Algorithm 1

(
X, |I|, λ, ε, 1

)
7: DI ← D̂ {assign learned dictionary to the appropriate indices}
8: s← s+ ŝ {accumulate weights}
9: s← s

N
{compute average}

Output: D, s
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Fig. 1. Synthetic 2D data drawn from two Gaussian distribu-
tions. The outliers are represented as the red triangles. (top-
left) Original data with outliers. (top-right) Clustering with
K-SVD. (bottom-left) Clustering with proposed method with
g(u) = u. (bottom-right) Clustering with proposed method
using the log function.

3. EXPERIMENTS

3.1. Experiments on synthetic data

We use synthetic generated datasets with outliers to demon-
strate that our method is robust against outliers. Figure 1
presents two clusters generated from two Gaussian distribu-
tions, each containing 250 points along with 50 outliers rep-
resented as the red triangles, far away from the clusters. Fig-
ure 1 also shows the clustering results using K-SVD [14]
as well as the proposed method when g(u) = u and the
log(ε + u) functions, respectively. Then, we compare how
many of the original outliers are among the 50 highest recon-
struction values. The proposed method using the log function
proved to be the most robust against outliers, with 47 from the
50 true outliers detected. It is followed by the variant with the
identity function, which identified 27 outliers, and finally by
K-SVD, which was naturally not able to identify any of the
original outliers. This example also shows that concavity of g
helps in better identifying outliers.
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(c) Different outlier ratios (%), with 1000
samples and 64 atoms.

Fig. 2. Performance of the proposed method with multidimensional data.

To further evaluate our proposal, we performed experi-
ments with higher dimensional data (fixed at 32 dimensions).
To generate the data, we use the approach described by Lu
et al. [15] to create synthetic data based on a dictionary and
sparse coefficients. The metric adopted to compare the results
is the AUC Curve (AUROC) of outlier scores {si} after run-
ning Alg. 1: outliers should have scores 1/si larger than non-
outliers, and each point is the average of 5 runs using newly
generated data. In Fig. 2a one can observe that the behavior
for both lines is the same until the number of atoms reach 32,
since k ≤ d and the condition in the first line of Alg. 1 is
not met. The performance of the undercomplete initialization
method also deteriorates for dictionary sizes a little bit greater
than d, but as far as k starts to increase it becomes evident that
this method outperforms the default initialization. Figure 2b
shows that our method stays very stable independent of the
number of samples, given a constant outlier ratio, regardless
of the initialization method. Finally, Fig. 2c shows the be-
havior of both initialization strategies in scenarios where the
outlier proportion changes. It can be noticed that the AUROC
values decrease slowly as long as the number of outliers in the
samples increase. This is natural since when the proportion
of outliers is large, outliers can hardly be considered outliers
anymore.

3.2. Human attribute classification

In order to prove that our robust dictionary learning method
is really beneficial to real data contexts, we also evaluate its
performance on the MORPH-II dataset [16], one of the largest
labeled face databases available for gender and ethnicity clas-
sification, containing more than 40,000 images. Before the
training and classification phases take place, the images are
preprocessed, which consists of face detection, align each im-
age based on the eye centers, as well as cropping and resiz-
ing. Finally, they are converted to grayscale and SIFT [17]
descriptors are computed from a dense grid.

The experiments are run with the proposed method us-
ing both the default and the undercomplete initialization
approaches using the log function, and then compared with
state-of-the-art methods such as K-SVD and LC-KSVD [18].

The classifier uses a Bag of Visual Words (BoVW) approach
[19] by replacing the original K-Means algorithm with each
of those methods, and then generating a image signature (his-
togram of frequencies) using the computed clusters, which
are later fed to a SVM. This SVM uses a RBF (Radial Basis
Function) kernel with tuned γ and C parameters. The number
of atoms is set to 200 for all experiments.

Method
Ethnicity Gender

accuracy std accuracy std
Our RDL (default) 96.28 0.075 84.76 0.730

Our RDL (undercomplete) 96.90 0.029 85.79 0.557
K-SVD 96.23 0.273 81.88 0.870

LC-KSVD1 96.24 0.239 83.91 0.692
LC-KSVD2 95.69 0.175 84.69 0.480

Table 1. Average accuracies (%) and standard deviations for
ethnicity and gender classification on the MORPH-II dataset.

Each experiment is the average of 3 runs, each one using
300 selected images per class for training, and the remain-
ing images for classification. The total number of images per
class is as follows: 32,874 Africans plus 7,942 Caucasians for
ethnicity classification, and 6,799 Females plus 34,017 Males
for gender classification. Table 1 shows the overall accura-
cies. These experiments clearly demonstrate that the quality
of the dictionaries computed by the proposed robust dictio-
nary learning method is indeed superior even to methods that
use labels for dictionary learning [18].

4. CONCLUSIONS

In this work, we proposed a generic dictionary learning
framework which takes advantage of a composition of two
concave functions to generate robust dictionaries with very
little outlier interference. We also came up with a heuris-
tic initialization which can further increase the identification
of outliers through the use of undercomplete dictionaries.
Experiments on synthetic and real world datasets show that
the proposed methods outperform some of the state-of-the-
art methods such as K-SVD and LC-KSVD, since our ap-
proaches are able to achieve higher quality dictionaries which
better generalize data.
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