
A GREEDY PURSUIT ALGORITHM FOR SEPARATING SIGNALS FROM NONLINEAR
COMPRESSIVE OBSERVATIONS

Dung Tran, Akshay Rangamani, Trac D. Tran ∗

Johns Hopkins University
Electrical and Computer Engineering Department

Baltimore, MD, USA

Sang (Peter) Chin †

Boston University
Department of Computer Science

Boston, MA, USA

ABSTRACT

In this paper we study the unmixing problem which aims
to separate a set of structured signals from their superpo-
sition. In this paper, we consider the scenario in which
the mixture is observed via nonlinear compressive measure-
ments. We present a fast, robust, greedy algorithm called
Unmixing Matching Pursuit (UnmixMP) to solve this prob-
lem. We prove rigorously that the algorithm can recover the
constituents from their noisy nonlinear compressive measure-
ments with arbitrarily small error. We compare our algorithm
to the Demixing with Hard Thresholding (DHT) algorithm
[1], in a number of experiments on synthetic and real data.

Index Terms— Unmixing, sparse recovery, compressed
sensing, nonlinear measurements

1. INTRODUCTION

The problem of unmixing two signals from their superposition
involves finding the unknown constituents through observa-
tions of the mixed signal. In general, this is a challenging
problem. Without making further assumptions, this problem
is ill posed and we cannot hope to reliably separate the un-
known component signals from their superposition. Instead,
if the constituent signals do not look similar to each other we
can imagine being able to separate them. To formalize this
assumption, we assume that each component signal can be
linearly expressed by a dictionary of atoms. The dictionary
atoms share some common structures that appear in the cor-
responding component signal, but do not appear in the other
constituents of the mixture. In this scenario, we say that the
unknown mixture components can be represented by incoher-
ent dictionaries [2], [3], [4], [5]

We consider an observation model where the mixture
signal is observed via linear compressive samples which
are passed through a smooth, monotonic, nonlinear operator
h : R → R. Furthermore, the observations can be corrupted
by dense additive noise. In particular, we wish to recover
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constituent signals from a limited number of noisy, nonlinear,
compressive measurements of their superposition:

y = h(A(u + v)) + e, (1)

where A ∈ Rm×N is a sensing matrix. The number of obser-
vations m is typical far less than the ambient dimension N .
y ∈ Rm is the observation vector, and e ∈ Rm is a zero-
mean noise vector. We assume that each coordinate of the
noise vector is a Gaussian random variable with variance σ2,
and the coordinates are independent of each other. Since this
problem is ill posed in general, we assume that the constituent
signals u,v have sparse representations in their dictionaries.
We assume that the sensing matrix A, the nonlinear operator
h, and the incoherent dictionaries sparsely representing the
components are known.
Our contributions: In this paper, we propose a fast and ro-
bust iterative algorithm called UnmixMP to unmix component
signals under the observation model (1). At a high level, each
iteration of the algorithm consists of two main steps. First,
it aims to identify a true dictionary atom for each component
signal. Second, we refine our estimate of each constituent sig-
nal based on those chosen atoms and all corresponding dictio-
nary atoms previously selected. Our algorithm is in the class
of greedy pursuit algorithm which have received lots of at-
tention in sparse recovery literature [2], [6], [7],[8], [9]. We
prove convergence for UnmixMP in the noisy and noiseless
(e = 0) cases. We also prove that the sample complexity
to achieve this linear convergence rate is upper bounded by
O
(
r log N

r

)
, where r is the total sparsity level of the com-

ponent signals. In addition, we support our theoretical anal-
ysis by experiments on both synthetic and real image data.
We demonstrate that our algorithm is significantly more ro-
bust than state-of-the-art unmixing algorithms in this nonlin-
ear setting.
Related Work: The unmixing problem has been studied ex-
tensively in signal processing and statistics literature. Ex-
amples include morphological component analysis (MCA) in
image processing, source separation in audio signals [5], and
sparse noise correction in Robust PCA [10]. These classi-
cal problems assume a linear observation model in which the
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constituent objects are assumed to be sparse in some weakly
correlated dictionaries. In fact when the observation model
is linear, McCoy et. al. ([11], [12]) show that it is possible
to reliably recover constituent signals from their compressive
measurements. Furthermore, a majority of them formulate
unmixing as a convex optimization problem, which are typ-
ically sensitive to parameter tuning and slower than greedy
pursuit methods. Blumensath and Davies propose a gradient
pursuit algorithm that is similar to ours in [13], but their al-
gorithm is tailored to minimize the squared loss between lin-
ear measurements and the estimated signal, whereas our loss
function is different (as explained in Section 2). They do not
explore its application to recovery from nonlinear compres-
sive measurements.

The work that is most closely related to ours is that
of Soltani et. al. [1]. In their work, the author proposed
a variant of the popular iterative hard thresholding (IHT)
method to demix component signals in the nonlinear model,
and achieve state-of-the-art performance. However, their
algorithm requires both the knowledge of sparsity level of
component signals and step-size parameter. Furthermore, as
shown in Section 4, our algorithm is significantly more ro-
bust than theirs in unmixing incoherent signals from Sigmoid(
h(x) = 1

1+e−x

)
and ReLU (h(x) = max(0, x)) compres-

sive observations. While both UnmixMP and the method
from [1] are only guaranteed to converge when the nonlinear
function is smooth, we show in experiments that UnmixMP is
able to recover components from even ReLU measurements.
Notation: For the sensing matrix A, we let aTj denote its
jth row. For a dictionary D, we refer to it as both the set of
dictionary atoms and a matrix whose columns corresponding
to the atoms. We denote DΩ as the matrix whose columns
are those from D, indexed by Ω. For a set Ω, the number of
elements is given by |Ω|. Finally, the projection of a vector
z on the subspace spanned by the columns of a matrix D
indexed by Ω is denoted by PDΩz.

2. THE UNMIXMP ALGORITHM

In this section, we describe our proposed algorithm, called
Unmixing Matching Pursuit (UnmixMP). We first briefly in-
troduce some quantities associated with sparse representation
of signals. The sparsity of a signal z is given by ‖z‖0,D,
which is the smallest number of columns in D that can ex-
actly represent z by a linear combination. We let suppD(z)
denote the index set of the atoms in D constituting z.

Definition 1. The mutual coherence of Φ,Ψ is given by

µ(Φ,Ψ) = sup
||x||2=1,||y||2=1

|〈Φx,Ψy〉| . (2)

We assume that the constituent signals u and v in the ob-
servation model (1) are k and s sparse w.r.t. some dictionaries

Φ and Ψ, respectively. We also assume that the two dictio-
naries Φ, Ψ, are mutually incoherent (which means that the
mutual coherence is small). In our setup, we assume that the
dictionaries are known. One approach to solve the unmixing
problem is thus to identify the dictionary atoms constituting
the component signals. That can be done by solving the fol-
lowing optimization problem with sparsity constraints [1]:

min
u,v

f(u,v) =
1

m

m∑
j=1

Γ(aTj (u + v))− yjaTj (u + v)

s.t. ‖u‖0,Φ ≤ k, , ‖v‖0,Ψ ≤ s.
(3)

Here, the real-value function Γ(·) is the integral of h, i.e.,
Γ(t) =

∫ t
−∞ h(z)dz.

We note that this is not the regular squared loss function
that is typically considered. The problem in 3 can be consid-
ered as an empirical version of the following problem:

min
u,v

E
[
Γ(aT (u + v))− yaT (u + v)

]
(4)

which matches the Gaussian noise assumption, as pointed out
in [1]. The partial gradients of the loss function in 3 have a
nice, easy to compute, closed form:

∇uf(u,v) = ∇vf(u,v) =
1

m
AT (h(Au + Av)− y)

(5)
To solve the optimization problem (3), we propose a fast

and robust greedy pursuit algorithm. Each iteration of the al-
gorithm involves first computing a proxy g which encodes
useful information from previous iterations. This proxy is
chosen to be the partial gradient of the objective function
f(u,v) evaluated at the estimated solution from the previous
iteration. As shown in Section 3, the proxy g is most aligned
with one of the atoms in each dictionary. We thus project
g onto the dictionaries, and extract an atom from each one
that is most correlated to it. Finally, we estimate the demixed
components by minimizing the loss function, restricting the
search space to the dictionary atoms extracted so far. This
procedure is detailed in Algorithm 1. We analyze its perfor-
mance guarantees in the next section.
Remark. Step 2 of the algorithm can be interpreted as a se-
lection step. It is akin to the selection step shared by a ma-
jority greedy pursuit algorithms in sparse recovery literature.
It can be inferred from Lemma 2 in the next section that each
dictionary atom extracted at this step significantly reflects the
structures of the corresponding constituent.

Step 4 in the algorithm is an Update step. Lemma 1 in
Section 3 implies that the estimated components at this step
look more similar to the correct constituents than the previous
estimates. Intuitively, this is due to the fact that the selection
step reveals more structures in the component signals. This
step can be solved with any projected gradient descent type
procedure.
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Algorithm 1 Unmixing Matching Pursuit (UnmixMP)
Input: Mixture y, sensing matrix A, dictionaries Φ and Ψ,
nonlinear operator h, sparsity (k, s) or stopping criterion
TOL
Initialization: t = 0, Ω0

u = ∅, Ω0
v = ∅

while not converged do
1. g = 1

mAT (h(Aut + Avt)− y)
2. iu = argminl ‖Pφl

g‖2
iv = argminl ‖Pψl

g‖2
3. Ωt+1

u = Ωtu ∪ {iu}
Ωt+1
v = Ωtv ∪ {iv}

4. (ut+1,vt+1) = argminu,v f(u,v)

s.t. u ∈ span(ΦΩt+1
u

),

v ∈ span(ΨΩt+1
v

)
5. t = t+ 1

end while

3. THEORETICAL ANALYSIS OF UNMIXMP

This section rigorously analyzes the performance guarantee
of the UnmixMP algorithm. In particular, we first show that
when the loss function f(u,v) satisfies certain restricted
strong convexity (RSC) and restricted strongly smoothness
(RSS) properties, the demixed estimates converge linearly to
the optimal solution of (3). We first introduce the following
definition of RSC and RSS in the context of unmixing.

Definition 2 ((k, s)-RSC/RSS). Let Suk and Svs be the union
of all subspaces spanned by all subsets of k columns of Φ and
s columns of Ψ, respectively. A function f satisfies (k, s)-
RSC/RSS with parameters mk,s,Mk,s if:

mk,s

(
‖u′ − u‖22 + ‖v′ − v‖22

)
≤ f(u′,v′)− f(u,v)

−〈∇uf(u,v),u′ − u〉 − 〈∇vf(u,v),v′ − v〉
≤Mk,s

(
‖u′ − u‖22 + ‖v′ − v‖22

) (6)

for all u′,u ∈ Suk , and v′,v ∈ Svs .

This property plays a key role in our analysis. We are now
ready to state our first result.

Theorem 1 (Convergence of Algorithm 1). Suppose the loss
function f(u,v) satisfies the (2k, 2s)-RSC/RSS property with
parameter m2k,2s and M2k,2s, respectively. Let (u∗,v∗) be
an optimal solution of (3). If 1 <

M2k,2s

m2k,2s
< 1+

√
5

2 , the unmix-
ing error satisfies

‖ut+1 − u∗‖2 + ‖vt+1 − v∗‖2

≤ ηt(‖u0 − u∗‖2 + ‖v0 − v∗‖2) + Cσ

(√
k

m
+

√
s

m

)
,

(7)

with a convergence rate η =

√
M2k,2s(M2k,2s−m2k,2s)

m2k,2s
< 1,

and C is a small, positive constant depending on m2k,2s and
M2k,2s. We recall that σ2 is the variance of the noise e.

Theorem 1 implies that when the RSS and RSC constants
of the objective function f satisfies the condition stated in the
theorem, the unmixing error decays geometrically at each it-
eration. Furthermore, in the noiseless case, this implies that
the unmixed estimates converge linearly to the optimal solu-
tion of (3). To achieve ε-close solutions for the unmixed com-
ponents, we need O

(
log ‖u

0−u∗‖2+‖v0−v∗‖2
ε

)
iterations.

Theorem 1 relies on certain convexity and smoothness
properties of the loss function. When the derivative of the
nonlinear operator h is bounded, and the dictionaries are suf-
ficiently incoherent, these properties of the loss function with
a relatively low sample complexity.

Theorem 2 (Sample complexity). Suppose that the rows
of the sensing matrix A are zero mean Gaussian vectors,
the absolute value of the derivative of h is bounded within
a positive interval, and µ(Φ,Ψ) is sufficiently small. If

m = O
(

(s+ k) log N
s+k

)
, with high probability, the loss

function f(u,v) satisfies the (k, s)-RSC/RSS properties with
parameters m2k,2s and M2k,2s.

Proof Sketch for Theorem 2: Let∇2
2k+2sf(u,v) be any (2k+

2s) × (2k + 2s) submatrix of the Hessian matrix of the loss
function. As the derivative of h is bounded away from zero, it
can be seen that in order for f achieve the desired RSC/RSS
properties, it suffices to show the minimum and maximum
eigenvalues of any∇2

2k+2sf(u,v) are bounded within a pos-
itive interval. Similar to the proof in Soltani et. al. [1], if
m = O

(
(k + s) log N

k+s

)
, for some 0 < α < 1, this holds

with high probability which yields the desired result.

The proof for Theorem 1 consists of two main steps,
which guarantee that the update and the selection steps yield
good constituent estimates and dictionary atoms, respec-
tively. These two insights are summarized in Lemma 1 and
Lemma 2 respectively. We state these lemmas without proof
due to space constraints.

Lemma 1 (Update step). Let

κu2k = max
|S|≤2k

‖PΦS∇uf(u∗,v∗)‖2

κv2s = max
|S|≤2s

‖PΨS∇vf(u∗,v∗)‖2

then,

‖ut+1 − u∗‖2 + ‖vt+1 − v∗‖2

≤
√
m2k,2s

M2k,2s

(
‖PΦ

Ω
t+1
u

u∗ − u∗‖2 + ‖PΨ
Ω
t+1
v

v∗ − v∗‖2
)

+ C1(κu2k + κv2s)
(8)

where C1 is a small constant.
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Lemma 2 (Selection step). Let us define ∆u = ut − u∗ and
∆v = vt − v∗. Then

‖PΦiu
∆u −∆u‖2 + ‖PΨiv

∆v −∆v‖2

≤

√
M2k,2s −m2k,2s

m2k,2s
(‖∆u‖2 + ‖∆v‖2) + C2(κu2k + κv2s)

(9)
where C2 is a small constant.

Proof Sketch for Theorem 1. Applying Lemma 1 and 2 leads
to

‖ut+1 − u∗‖2 + ‖vt+1 − v∗‖2
≤ η (‖∆u‖2 + ‖∆v‖2) + C ′ (κu2k + κv2s) ,

(10)

for some small constant C ′. Applying this unmixing er-
ror bound iteratively and applying Khintchine inequality to
bound κu2k and κv2s yields (7).

4. EXPERIMENTAL RESULTS

We perform some numerical experiments to demonstrate the
effectiveness of demixMP. We compare our algorithms to
the Demixing with Hard Thresholding (DHT) algorithm pre-
sented in Soltani et. al [1]. We tested our algorithms on both
synthetic data and real images.

First we show results from some synthetic experiments.
We generate the constituent signals u v of lengthN = 210 us-
ing the Identity and Fourier bases (Φ, Ψ). The measurement
matrix A was chosen to be a random Gaussian matrix with
normalized rows. These linear measurements were fed into a
nonlinear function to generate the final measurements y. We
tested our algorithm with both the Sigmoid

(
h(x) = 1

1+e−x

)
and ReLU (h(x) = max(0, x)) nonlinearities.

The sparsity of the signals was varied from s = 5 to
s = 300, and the number of measurements was varied from
m = 50 to m = 200. We measured the Cosine Similarity
between the recovered signal and original signal. We ran 10
different iterations of the experiment for each setting ofm and
s, and counted the number of successful recoveries of x. A
successful recovery was declared if the Cosine Similarity was
> 0.95. The phase transition curves for Sigmoid and ReLU
are shown in the figures 1 and 2. We observe that UnmixMP
outperforms DHT in terms of better recovery at higher spar-
sity levels. We also see that DHT performs much worse on
ReLU measurements as compared to Sigmoid measurements.
Even though both DHT and UnmixMP are only guaranteed to
work for smooth nonlinearities (like sigmoids), we note that
UnmixMP seems to be able to handle non-differentiable func-
tions like ReLU.

For our experiments on real images we corrupted some
common test images (Boats, Barbara) [14] which were 64×64
in size, by adding a sparse (40 non-zero entries) matrix of
1s with randomly chosen support. We then tried to separate
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Fig. 1. Phase transition diagrams for ReLU measurements
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Fig. 2. Phase transition diagrams for Sigmoid measurements

the image from the sparse noise from m = 2000 compressed
Sigmoid measurements. We use a discrete cosine transform
(DCT) matrix and an identity matrix as dictionaries for the
image and noise, respectively. We compared UnmixMP to
DHT in terms of PSNR of the recovered image. In both cases
we were able to perform better than DHT. These results are
reported in Table 4.

Image DHT UnmixMP
Boats 13.8 dB 15.1 dB

Barbara 14.1 dB 14.9 dB

Table 1. PSNR of image recovered from Sigmoid compres-
sive measurements

5. CONCLUSION

We present a greedy pursuit algorithm UnmixMP, for unmix-
ing the components of a signal from nonlinear compressive
measurements. We also prove its convergence, and give
bounds on its sample complexity. We also present experi-
ments that show the superiority of UnmixMP to other recent
methods [1], especially with popular nonlinearities like Sig-
moid and ReLU. We would like to explore algorithms to learn
the incoherent dictionaries as well as the sparse components.
We would also like to extend our theoretical results to be
able to prove convergence in the case of measurements made
using non-smooth functions like ReLU.

2174



6. REFERENCES

[1] Mohammadreza Soltani and Chinmay Hegde, “Fast al-
gorithms for demixing sparse signals from nonlinear ob-
servations,” arXiv preprint arXiv:1608.01234, 2016.
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