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ABSTRACT

Persistent cough is a symptom common to a number of res-
piratory disorders; however, reliable monitoring of cough fre-
quency and cough severity over an extended period of time
can be a challenge. Traditional methods involve subjective
evaluation by care providers or patient self-reports. As an
alternative, we propose an objective method for monitoring
cough using a wearable microphone. We collected 24-hour
audio recordings from 9 patients suffering from chronic ob-
structive pulmonary disease, asthma, and lung cancer using
the VitaloJAK wearable microphone. Trained professionals
carefully listened to each audio stream and manually labeled
each cough event. Using this data, we propose a new neural-
network-based cough detection scheme. A pre-processing al-
gorithm is used to estimate the start and end of each cough and
the deep neural network is trained using each cough instance.
Experiments demonstrate an average leave-one-participant-
out cross-validation specificity and sensitivity of 93.7% and
97.6% respectively.

Index Terms— cough detection, deep learning, mobile
health sensing, respiratory disease, audio processing

1. INTRODUCTION

Coughing is one of the most important and frequent symp-
toms reported by patients [1] [2]. Chronic cough can result
in deleterious effects on health and quality of life [3]. Moni-
toring cough symptoms is important in detecting and treating
respiratory conditions such as chronic obstructive pulmonary
disease (COPD), asthma, pulmonary fibrosis, and tuberculo-
sis [4] [5] [6].

To assess the frequency and severity of cough, several
subjective tests have been developed (e.g. Leicester cough
questionnaire [7], visual analog scales, etc.). These methods
provide insight into the perceived severity of cough symp-
toms, but are ultimately unreliable when compared to objec-
tive methods of studying cough, because factors such as pa-
tient mood, vigilance, and the placebo effect can impact the

patient’s report of cough frequency [8] [9].
However, objective tools for studying cough are lacking.

One quantitative method to assess cough frequency and sever-
ity consists of using ambulatory systems to record audio from
patients for an extended time, and then manually counting the
number of coughs in the recorded audio. Manually counting
coughs is a time-consuming process that requires an expert
to verify labeled coughs [10]. This is impractical for large
amounts of data.

A number of automatic cough detection systems have been
proposed in the literature. The Leicester Cough Monitor (LCM)
[11], and VitaloJAK [12] are examples of ambulatory sys-
tems consisting of both wearable devices to record patient au-
dio, and algorithms for cough detection from recorded data.
The LCM applies a Hidden Markov Model (HMM) trained
on mel-frequency cepstral coefficients (MFCCs) in order to
detect cough sounds. However, the LCM algorithm is only
semi-automated - it requires manual tuning of model parame-
ters for each individual recording [13]. This algorithm takes a
24-hour patient audio recording and creates a shorter record-
ing with all suspected coughs. To decrease false alarm rate, a
portion of the detected coughs must be manually confirmed
by personnel [11].

Recently, there has been significant interest in applying
deep learning techniques to automatic cough detection. In [14]
the authors devise a probabilistic neural network trained using
linear predictive cepstral coefficients (LPCCs) and MFCCs to
distinguish cough sounds from background. The authors in
[15] and [16] applied convolutional neural networks (CNNs)
trained directly on the short-time Fourier transform (STFT)
of audio segments. However, most of these methods are vali-
dated on limited datasets collected in artificial environments,
or use proprietary hardware for collecting patient data. For ex-
ample, in [17] the data only consists of three patients recorded
in a hospital setting; and, only one patient was recorded for
more than four hours. The authors in [15] and [16] use cus-
tom hardware to record healthy volunteers reading passages
and voluntarily coughing in a controlled lab setting. It is well-
known in the literature that voluntary coughs have different
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Fig. 1. Spectrogram of speech and noise compared with three
coughs

patterns from reflex coughs [18]. In [19] a pre-trained neural
network is applied to 24-hour patient recordings collected in
a restricted, hospital environment. They use custom recording
devices rather than using an FDA-cleared cough monitor.

In this work, we propose a framework for audio-based
automatic cough detection. The main contributions of this
work are: (1) an extensive dataset containing 9 days of au-
dio recorded in real-world conditions, from 9 patients with a
variety of respiratory illnesses, using the FDA-cleared cough
monitoring device, VitaloJAK; (2) a pre-processing algorithm
to fine tune data labels to improve neural network accuracy
and convert event based cough labeling to labels containing
cough start and end points; (3) a deep neural network (DNN)
trained using MFCCs and other features to discriminate cough
sounds from background noise. The proposed framework
achieves an average leave-one-out cross-validation specificity,
sensitivity, and accuracy of 93.7%, 97.6% and 92.3% respec-
tively.

2. METHODS

2.1. Data Collection

Recordings were supplied from an acoustic cough recording
repository (RADAR) maintained at the University Hospital
of South Manchester, with patient consent. Sound recordings
were collected using the VitaloJAK cough recording device
over 24-hour periods; recordings were commenced in a re-
search clinic and then patients were permitted to go about
their normal daily routines. The monitors were collected once

Participant Disease Coughs Gender
1 Chronic Cough 3133 M
2 Chronic Cough 509 F
3 Chronic Cough 546 F
4 COPD 102 F
5 COPD 852 F
6 Asthma 221 F
7 Asthma 118 M
8 Lung Cancer 163 F
9 Lung Cancer 26 M

Table 1. Detailed Participant Information

the recordings were completed. The device makes continuous
sound recordings at 8 kHz sample rate, from an air-coupled
contact microphone placed over the manubrium sterni and a
free-field lapel microphone. We use audio from the lapel mi-
crophone for our analysis. Participants were instructed not to
remove the device or microphones during the recording and
to keep the equipment dry. A total of 9 recordings (3 chronic
cough, 2 asthma, 2 chronic obstructive pulmonary disease and
2 lung cancer patients) were included in the analysis. Each 24
hour recording was listened to in its entirety by technical staff
trained in cough identification, and the location of each cough
sound heard was recorded electronically.

Our dataset consists of a total of 5,670 coughs. The dataset
contains a rich variety of background noise such as music,
conversation, watching television, and riding in a car. The au-
dio contains many sounds easily confused with coughing such
as throat clearing, sneezing, and laughing. Table 1 shows the
breakdown of the dataset by disease, cough count, and gender.

Figure 1, shows the spectrogram of three coughs of dif-
ferent length and a set of non-cough sounds taken from the
dataset. We can make two important observations from this
spectrogram. We note that coughing contains a larger amount
of energy in higher frequencies than speech or other types
of noise. A properly trained DNN can discriminate coughing
from background by utilizing these characteristics unique to
coughing. Also, any algorithm trained to detect these coughs
must be able to account for the variability in cough length and
intensity (see Figure 1).

2.2. Data Preprocessing

Every cough in the database was manually labeled by a trained
expert. The top graph in Figure 2 shows how coughs were la-
beled. As we have noted, coughs vary in duration. However,
the provided labels do not reflect this information. If features
are extracted from a constant window around the provided la-
bels, background audio events adjacent to coughing can be
unintentionally included as part of the cough. Therefore, we
must determine the cough start and end times from the pro-
vided labels.

The cough reflex consists of three audible portions: 1) a
rapid, explosive phase, 2) an intermediate, decaying phase
consistent with forced expiration, and 3) a voiced phase (not
necessarily present in all coughs). Since the first two phases
are ubiquitous across all coughs, they allow us to determine
the start and end of a cough using an energy-based criteria.

Figure 2 outlines the label preprocessing algorithm. Given
the event-based label, we extract a 420 ms window of audio
from 70 ms before to 350 ms after the provided label. We
choose a window of 420 ms because more than 95% of all
coughs in our dataset were observed to be shorter than 400
ms in duration.

Next, an energy versus time profile is generated for the
cough. We calculate the energy for every 10 ms frame within
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Fig. 2. Preprocessing algorithm extracts a more descriptive
cough label. Given a labeled cough (shown in top graph), we
extract an energy vs. time profile for the cough (shown in mid-
dle graph), and use this to determine the cough duration

the 420 ms window using a step size of 2 ms. We calculate the
energy for each 10 ms frame and find the maximum value of
this energy profile within the 420 ms window. The first 10 ms
frame that precedes the maximum energy frame with 15% of
the energy of the maximum energy frame is chosen as the start
of the cough; and the first frame that occurs after the maxi-
mum energy frame with 10% of the energy of the maximum
energy frame is selected as the end of the cough. Any cough
found to have a duration of less than 40 ms is pruned from
the dataset1. The resulting dataset consists of coughs ranging
from 40 ms to 420 ms duration, with an average duration of
200 ms.

2.3. Feature Extraction

A total of 168 features are used as inputs to the DNN. Since
we aim to apply the DNN in a real-time setting in subsequent
work, we perform training and inference using 200 ms frames
of audio (200 ms corresponds to the average cough length).
Four 200 ms training examples are generated from each cough
by varying the location of the cough within each training ex-
ample. This ensures the DNN is invariant to the position of a
cough within the frame.

For each cough, two training examples are generated such

1Less than 0.1% of all coughs were pruned
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Fig. 3. Each 200 ms frame is subdivided into 50 ms windows
- 42 MFCC features are calculated for each 50 ms segment.

that the beginning of the training example can occur anywhere
within a 25 ms window before or after the cough start time
(with uniform random probability). The remaining two out of
four training examples are similarly generated, but the win-
dow is increased to 60 ms before or after the cough start.

Then, each 200 ms frame is further subdivided into four
50 ms windows to capture the temporal profile of each audio
frame (Figure 3). From each 50 ms window we compute 42
features: 13 MFCCs, 13 MFCC delta features, and 13 MFCC
delta-delta features. The remaining three features are the log
energy within the 13 MFCCs, 13 MFCC delta features, and 13
MFCC delta-delta features. Since we break down each 200 ms
frame into four 50 ms windows, we supply our network with
168 input features. To generate non-cough training examples,
we randomly sample 200 ms segments of non-cough audio
and calculate the same 168 features.

2.4. Neural Network Model for Cough Detection

Figure 4 shows our proposed neural network architecture. The
DNN was trained with an equal number of positive and neg-
ative examples using stochastic gradient descent (SGD) and
momentum. Using a grid search and cross-validation, we em-
ployed a learning rate of 0.15, momentum of 0.9, and a batch
size of 150. The network was trained for 50 epochs.

3. RESULTS

Table 2 summarizes the leave-one-out specificity, sensitivity,
and accuracy our algorithm achieves. The DNN is trained on
all subjects except for one, which was left for testing. This is
then repeated across all subjects in the entire dataset (leave-
one-participant-out cross validation).

To compute accuracy, a test data set of four positive exam-
ples are created for each cough in accordance with the method
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Fig. 4. Proposed network architecture for cough detection

outlined in Section 2.3. An equal number of negative test ex-
amples are randomly selected from background audio. To cal-
culate sensitivity and specificity, a 200 ms sliding window is
extracted from each 24 hour recording, with a step size of 50
ms. We define a false positive as any 200 ms frame that was
incorrectly classified as a cough, and was not within 1 second
of a cough.

The DNN achieves an average leave-one-out accuracy of
92.3%, with the highest accuracy of 96.2% for participant 5,
and lowest accuracy of 89.7% for participant 7. This is due to
the unique cough signature of participant 7 which is percep-
tually similar to throat clearing.

Sensitivity (true positive rate) and specificity (true neg-
ative rate) are more useful in describing the DNN’s perfor-
mance on 24 hour segments of audio due to the severely im-
balanced classes. The algorithm results in an average speci-
ficity and sensitivity of 93.7% and 97.6% respectively.

Participant 4 and 7 both had the lowest specificity of 87%.
This is due to the large amount of loud conversation in both
of these recordings. Loud speech is one of the most likely
sources of false positives. As several authors note, the most
difficult part in designing ambulatory cough detection sys-
tems is robustness to false alarms [11] [12] [20]. Since classes

Subject Specificity % Sensitivity % Accuracy %
1 97.7 92.2 95.2
2 95 97.4 95.4
3 88.1 97.8 91.9
4 87 97.3 91.2
5 97 97 96.2
6 98.3 97.6 94.3
7 87 94.4 89.7
8 96 96.1 92.5
9 97.3 97.6 92.3

Avg 93.7 97.6 92.3

Table 2. Leave-one-out specificity, sensitivity, and accuracy
of proposed algorithm
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Fig. 5. Receiver Operating Characteristic (ROC) of our algo-
rithm averaged across all participants. Area under the curve
(AUC) is 0.93

are heavily imbalanced, specificity must be as high as possi-
ble to avoid large numbers of false positives.

As was expected, the sensitivity for participant 7 was lower
than average (94.4%) due to the participant’s uncommon cough
pattern. The lowest leave-one-out sensitivity of 92.2% is found
for participant 1. Since 3,133 out of the 5,670 (more than
55% of all training set coughs) come from participant 1, the
DNN is likely to have an incomplete model of cough when
the recording from participant 1 is left out from training.

The receiver operating characteristic (ROC) averaged across
all participants is shown in Figure 5. We use the same test data
set that is used to find accuracy in creating the ROC. The area
under the curve (AUC) of the ROC is 0.93, a value close to
1 indicating that our model performs well in discriminating
cough from background.

4. CONCLUSION

In this paper, we propose and implement a deep neural net-
work and a data pre-processing algorithm for cough detec-
tion from ambulatory data collected with the FDA-cleared
VitaloJAK device. We trained a DNN with two hidden lay-
ers on MFCC features to successfully discriminate coughing
sounds from background noise. Results indicate our algorithm
achieves high sensitivity, specificity, and accuracy on our ex-
tensive dataset. The proposed framework could decrease the
load on medical personnel in labeling coughs from ambula-
tory audio recordings.

Future work will focus on extending the robustness of the
algorithm with respect to the recording conditions and the
recording device. Our goal is to use a similar algorithm to
develop a reliable cough detector that can be used on audio
data passively collected by personal mobile devices.
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