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ABSTRACT

In this paper, a new method to classify the animal sound sig-
nals that are overlapped in time-frequency domain based on
sparse representation is proposed. In order to obtain a dis-
criminant sparse representation of overlapped animal sound
signals, a novel dictionary atom discriminant factor is intro-
duced. Then the proposed method generates a representation
that contains crucial signal discriminant information for clas-
sification and the sparsity for sparsest representation. The ex-
perimental results show that the proposed method has a much
superior performance than the conventional sparse represen-
tation based classification method for classifying the over-
lapped animal sound signals.

Index Terms— animal sound classification, sparse repre-
sentation, overlapped signal

1. INTRODUCTION

The classification of animal sounds is an important research
subject for the tracking of animals for research and conser-
vation purposes [1, 2, 3], such as marine animal songs and
bird calls. Many methods [1, 2, 3, 4, 5] have been proposed
for animal species classification, but little work focuses on the
problem that the animal sounds are overlapped. To our knowl-
edge, only Briggs [1, 2] and Brandes [3] mention that more
work is needed to identify the multiple simultaneously vocal-
izing birds. It is a challange problem to reliably classify the
real-world audio data collected in an acoustic monitoring sce-
nario. And it is indeed difficult to classify the multiple simul-
taneously calls [1]. The bird calls and marine animal songs
often have overlapping components in the time-frequency do-
main, especially for the audios collected by unattended omni-
directional hydrophones. Their vocalizations have significant
frequency content in the range audible to a human listener and
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they have overlapping frequencies [2, 6]. Therefore, the clas-
sification of sounds overlapping in the time-frequency domain
is an important problem to be solved.

In [2], for the classification of multiple simultaneous bird
species, a time-frequency segmentation of audio is developed
by using random forest classifier. Three types of features are
applied to describe a segment and a multi-instance multi-label
framework for supervised classification is developed. There
are three stages in most classification systems: segmentation,
feature construction, and supervised classification. However,
in these classification systems, the performance of classifi-
cation depends on the selected features. It is hard to know
what features can be used to express a signal better and how
to extract the features. Moreover, different selected features
can result in significantly different accuracy of classification
for certain acoustic signals [7], ranging from 50% to 91.53%
[8, 9, 10]. So a better way is needed to classify animal sound
signals.

In recent years, sparse representation has received a great
deal of attention [11, 12, 13]. This is due to the fact that sig-
nals or images with high dimension can be coded by using a
few representative atoms in an overcomplete dictionary. And
it has been shown that sparse representation works well in sig-
nal classification [11, 13, 14, 15] due to its robustness to noise
and missing data [14, 16]. So sparse representation based
classification (SRC) is a good way to deal with the prob-
lem of classifying animal sound signals. But for the signals
overlapped in time-frequency domain, there are same repre-
sentative atoms in different classes and the overlapping part
increases the probability of selecting atoms from the other
classes. It will increase the classification error rate. So it is
necessary to eliminate the effect of the overlapping part for
the classification of overlapped signals.

In this paper, in order to remove the effect of the over-
lapping part, a discriminant factor is incorporated based on
sparse representation to classify the animal sound signals
overlapping in the time-frequency domain. We deal with the
overlapping part in training stage and obtain a set of optimal
atoms that have the discriminatory power for classification
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by introducing a new discriminant factor. The proposed
method generates a representation that contains crucial signal
discriminant information for classification and the sparsity
for sparsest representation. The experimental results show
that compared with sparse representation based classifica-
tion, the proposed method has a superior performance for the
overlapped animal sound signal classification.

The remainder of the paper is organized as follows: Sec-
tion 2 presents the details of our proposed method. Section
3 discusses experimental results, and Section 4 concludes the
paper with a brief summary.

2. NEW SPARSE REPRESENTATION BASED
CLASSIFICATION METHOD FOR OVERLAPPED

SIGNAL

In this section, the new classification method for overlapped
animal sound signal based on sparse representation is formu-
lated mathematically.

Given a test animal sound signal yt ∈ RN with N length,
the problem of sparse representation for the signal is to make
sure the sparse coefficients x ∈ L×1 are clustered around the
class corresponding to the test signal yt. The test signal yt

can be expressed as a linear combination of atoms from the
corresponding class.

For representation of the overlapped animal sound sig-
nal and eliminate the effect of the overlapping time-frequency
part, a discriminant factor is combined to produce a discrim-
inant representation of the overlapped animal sound signal in
training stage. Suppose d ∈ RN is an atom from Ds which is
a set containing atoms selected from dictionary D according
to the overlapping part between classA and classB. D is Ga-
bor dictionary with M atoms in RN composed of sines with
Gaussian envelopes for the time-frequency analysis of animal
sound signal. As mentioned in [17, 18], Gabor dictionary is
good to analyze the time-frequency properties of signals. CA

is the set of sound frames of class A with LA atoms in RN

and CB is the set of sound frames of class B with LB atoms
in RN . Take class A as an example, we define the novel atom
discriminant factor as

P(d) = max
||yTd||2y∈CA

||yTd||2y∈CB

. (1)

For class B, the discriminant factor is obtained by swap-
ping CA and CB . The discriminant factor makes sure that
there are no same atoms in different classes and the opti-
mal atoms are selected. So the effect of the overlapping part
can be eliminated for the classification of overlapped animal
sound signals. By incorporating the discriminant factor into
sparse representation, a representation that contains crucial
information for discriminitive classification and the sparsity
for sparsest representation is generated.

A discriminant sparse representation is obtained by max-
imizing the following optimization problem,

J1(d, λ1, λ2) = P(d)− λ1||y −Dxv||2 − λ2||xv||1, (2)

where y ∈ CA. xv is the vector of sparse coefficients. d ∈
Ds ⊆ D . λ1 > 0 and λ2 > 0 are scalar weighting fac-
tors that balance the tradeoff among the discriminant factor,
reconstruction error and sparsity. For d ∈ D and d /∈ Ds,
it is equivalent to solving a sparse representation problem
J2(d;λ) as defined in [15] to obtain the representative atoms
of training signals CA and CB . Then instead of maximizing
J1(d, λ1, λ2), we maximize the sparse representation prob-
lem

J2(d;λ) = ||y −Dxv||2 + λ||xv||1, (3)

where λ > 0 is a scalar regularization parameter that balances
the tradeoff between reconstruction error and sparsity.

In the test stage, suppose Y with L atoms in RN contains
the representative atoms of CA and CB obtained in the train-
ing stage, Y = [YA,YB ]. Let YA = [dA1 , d

A
2 , ..., d

A
MA

] ∈
RN×MA with MA atoms be the matrix for CA. And dA1 , dA2 ,
..., dAMA

represent the atoms in YA. YB = [dB1 , d
B
2 , ..., d

B
MB

] ∈
RN×MB with MB atoms is the matrix for CB . dB1 , dB2 , ...,
dBMB

are the atoms in YB . L =MA +MB .
To predict the class of a test signal yt, the sparse coef-

ficient is computed by optimizing the following problem ac-
cording to [15],

xt = argmin
x
||yt −Yx||2 + λ||x||1. (4)

In [15], the class of the test sample yt is decided accord-
ing to the smaller approximation error. And the errors for CA

and CB can be computed as follows. c is A or B:

ec = ||yt −Ycx
c
t ||2. (5)

But in reality, the received signal obtained from hy-
drophones is a mixture of animal sounds from different
classes. Then the decision rule of classification mentioned
above is invalid. When the received signal is a mixture of
animal sounds from different classes, the errors of the corre-
sponding classes can be all small. It is hard to decide what
class the signal is. In our method, when the errors of the
classes

ec = ||yt −Ycx
c
t ||2 < ε, (6)

we deem the test signal as a mixture of sounds from the cor-
responding classes. ε is a scalar and an empirical threshold.
According to the experiments, the errors of the two classes
are nearly the same in this two-class classification scenario
when the test signal is a mixture of sounds from the two dif-
ferent classes and the energy of different sounds are close to
the same. In this case, the emprical threshold can be set as 0.5
for the test signals that are normalized.
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3. EXPERIMENTAL RESULTS

The experiment of overlapped animal sound signal classifi-
cation is conducted using audios from online databases in
[19, 20, 21, 22], including whale sounds and dolphin sounds.
These audios are segmented in the preprocessing stage and all
sample sounds are nearly have a complete call. Fig.1 shows
two sample sounds in our experiment. From Fig.1, we can
see that dolphin sound and whale sound have overlapping fre-
quency components.

(a) dolphin sound

(b) whale sound

Fig. 1. Sample sounds of dolphin and whale. We can see that
there are overlapping frequencies between dolphin sound and
whale sound.

In the experiment, there are 15 training animal sound sig-
nals and 25 test animal sound signals. Then a set of represen-
tative atoms is obtained in training stage by adopting the pro-
posed new method for classifying the test signals. To compare
with the proposed method, sparse representation based clas-
sification mentioned in [14] without introducing the discrim-
inant factor is also performed and the classification accuracy
rate of the test animal sound signals by using sparse repre-
sentation based classification is 84%. While the classification
accuracy rate of the test animal sound signals by adopting the
proposed method is 92%.

To demonstrate the effectiveness of the proposed method,
sparse coefficients are plotted when a test signal is repre-
sented as a sparse linear combination of the atoms obtained in
training stage. Sparse coefficients of the two sample sounds
(shown in Fig. 1) are plotted in Fig. 2 by adopting the pro-
posed method. The horizontal axis represents the atoms ob-
tained in training stage and the vertical axis is the coefficients
of the atoms. Red represents the atoms of class whale, and
blue represents the atoms of class dolphin. There are values
for the atoms which are selected to represent the test signals
while the coefficients of unselected atoms are zeros. From
Fig. 2, we can see that most selected atoms belong to the
same class as the test signals. And there is almost no selected
atom from the different class. It means that the atoms ob-
tained by adopting the proposed method is discriminatory to
represent the whale sound and dolphin sound.

Fig. 3 shows the sparse coefficients obtained by using
sparse representation based classification. In Fig. 3, a few
coefficients are in the different class as the test signals which
means that some atoms from the different class are selected
to represent the test signals. It is mainly caused by the over-
lapping part of whale sounds and dolphin sounds. Compared
with Fig. 2, it can be seen that the proposed new method is
more discriminatory for the overlapped animal sound signals
classification by introducing the discriminant factor.

4. CONCLUSION

In this paper, we develop a new classification strategy to
classify the animal sound signals overlapping in the time-
frequency domain. By introducing a novel dictionary atom
discriminant factor, the optimal signal atoms are selected for
classifying the overlapped animal sound signals. Then the
sparse representation of overlapped animal sound signal con-
tains crucial signal discriminant information for classification
and the sparsity for sparsest representation. Experimental
results show that the proposed new method is much supe-
rior for overlapped animal sound signal classification than
the conventional sparse representation based classification
method.
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Fig. 2. Coefficients of the two sample sounds by adopting the
proposed method. Red represents the atoms of class whale,
and blue represents the atoms of class dolphin. Almost all the
selected atoms belong to the same class as the test signals.

Fig. 3. Coefficients of the two sample sounds by using sparse
representation based classification. Red represents the atoms
of class whale, and blue represents the atoms of class dolphin.
A few selected atoms are in the other class.
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