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Abstract—Video enhancement methods enable to optimize the
viewing of video content at the end-user side. Most approaches
do not consider the compressed nature of the available content.
In the present work, we build upon a recently proposed video
enhancement approach that explicitly models a compression
stage. To apply the enhancement framework on compressed
representations requires to extract specific syntax elements dur-
ing their decoding. This additional information embeds the
enhanced result in a domain that closely fits the observation.
We evaluate the framework performance in a single source
resolution enhancement scenario, and show the method efficiency
with respect to state-of-the-art approaches.

Index Terms—video enhancement, super resolution, HEVC,
convex optimization

I. INTRODUCTION

Video compression standards, such as the recent High Effi-
ciency Video Coding (HEVC) [1], enable to achieve efficient
video compression. Yet, there is a great potential for video
enhancement approaches that recover, at the end-user side,
the video content with optimal quality. In this work, we
particularly focus on the single source resolution enhancement
issue, often denoted as Single Source Super Resolution (SS-
SR). Given the limited number of bands in video broadcast
spectrum, SS-SR is of particular interest as it may be used
to replace SD and HD transmissions with a single HEVC
description that can provide on demand quality adjustments.

Video enhancement is a wide research field, since multiple
topics are covered by this denomination (de-noising, de-
blurring, resolution enhancement, etc.). SS-SR methods are
under active exploration [2], [3], [4], [5]. We observe that SS-
SR approaches often consider that the observed low resolution
image x ∈ RM is a down-sampled observation of the image
to be found X ∈ RN (where M and N are the number of
pixels in the observation and target image, respectively). By
denoting L ∈ RM×N the sensing matrix, which may include a
low-pass anti-aliasing filter, the following degradation model
is obtained:

x = LX (1)

Most recent learning-based SS-SR methods [6], [7], [8],
[9], [10], which are arguably the current best performing
approaches, rely on this degradation model. Yet, the approach
may not adapt well to compressed streams. Unlearned com-
pression artifacts may be misleadingly confused with image
features. In [11], the authors specifically learn regressors on

a compressed dataset. However, in practice,the learned model
needs to be related to the compression ratio used.

In a previous work [12], we presented a new theoretical im-
age enhancement framework that handles multiple compressed
representations while in [13], we show an extension to multi
source compressed video and propose new applications. The
framework has the particularity to explicitly model a generic
compression stage. A first single source HEVC application of
the framework in [14], where the SR potential on Intra frames
is discussed. The present work further analyzes the framework
behavior with single source HEVC encoding. In particular,
predicted frames are now included in the SR framework, and
a more thorough experimental evaluation is provided. The
method’s behavior with respect to one of the best performing
SS-SR approaches is discussed in multiple scenarios, showing
the high adaptation capability of the proposed framework.

The remaining of this paper is organized as follows. A
presentation of the SS-SR framework is proposed in Section II.
Then, its application to HEVC content is discussed in Section
III. Experimental results are presented in Section IV. Finally,
conclusions are drawn in Section V.

II. A COMPRESSED VIDEO ENHANCEMENT FRAMEWORK

A. Acquisition model
Let us denote by X = [X1, ..., XK ], with ∀ i ∈ [1,K],

Xi ∈ RN an original video sequence. We model the acquisi-
tion process of i-th image by a linear operator Li ∈ RM×N .
We consider that the observation X = [X1, ..., XK ], with
∀i ∈ [1,K], Xi ∈ RM is available in the form of an HEVC
bitstream, which relies on the generic hybrid video coding
scheme presented in Fig. 1. As many other image/video com-
pression approaches, HEVC relies on block-based transforms
and a subsequent quantization to efficiently compress the video
frames. Moreover, a prediction step is involved: HEVC does
not apply directly the transforms to pixel blocks, but to a
residual obtained by differentiating the observation with a pre-
diction. Therefore, the encoded coefficients z ∈ RM contained
in HEVC bitstream are the quantized version (quantization
operatorQ) of the output of the transform T applied to residual
pixel blocks, so that the resulting model can be written as
follows (X̃i being the HEVC prediction of the i-th frame):

Xi = T−1i (zi), zi = Qi

(
yi
)
, yi = Ti(LiXi − X̃i) (2)
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Fig. 1. A generic hybrid video coding scheme.

B. Video enhancement in the compressed domain

For the sake of clarity, this section only gathers a succinct
presentation of the video enhancement framework presented
in our previous work [12]. We invite the reader to refer to
[12] for a more thorough description of the proposed model
and additional information on the method used to solve the
associated minimization problem.

1) Compression-related clues: Reconstruction levels (zi)
are used as a quality reference in the transform domain. Given
an estimate X̂i of the i-th video frame, we minimize the
following data fidelity cost function:

JDF(X̂i) = |Ti(LiX̂i − X̃i)− zi|
2

(3)

Additionally, note that we know the Quantization Interval
(QI) for each quantized coefficient in the bitstream. If we
denote by j

(k)
i the QI index for the coefficient z(k)i , we can

define:

Ci = {y = (y(k))1≤k≤M ∈ RM | ∀k, y(k) ∈ QI
j
(k)
i
} (4)

This definitions enable to model the QI validity constraint:

Find X̂i : Ti(LiX̂i − X̃i) ∈ Ci (5)

2) Range constraint: Encompassing a priori information
into the reconstruction problem is a common choice in lit-
erature. We first enforce the solution to have pixel values
belonging to a specific range, typically known given the
application domain:

Find X̂i : ∀k ∈ [1, N ], Xmin
i ≤ X̂(k)

i ≤ Xmax
i . (6)

3) TV constraint: Finally, a classical choice is to enforce
the smoothness of the solution by limiting its discontinuities
according to a suitable metric. We opt here for the classical
Total Variation (TV) [15] to measure the discontinuity of
the solution. In order to avoid over-smoothing, the TV is
introduced as an additional constraint. By denoting X0

i the
initial estimate for the i-th video frame, the TV boundary used
for the enhanced result is derived according to:

find X̂i : TV(X̂i) ≤ ηi where ηi = η0 · TV(X0
i ) (7)

In this work, we empirically selected η0 = 0.95, which was
found to provide a stable and efficient application of the
constraint at various compression levels.

Fig. 2. A schematic view of the usage of HEVC information in the
optimization framework.

C. Enhancement model

We now denote ιC the characteristic function of a closed
convex set C, defined by:

ιC(y) =

{
0 if y ∈ C
+∞ otherwise.

(8)

The enhancement framework then consists in minimizing, for
each video frame, the following criterion :

Find X̂i ∈ Argmin
X̂i∈RN

(
JDF(X̂i)+

ιCi
(Ti(LiX̂i − X̃i)) +

S∑
s=1

ιDs(i)(FsX̂i)

)
(9)

where, ιDs(i) is the closed convex set of constraint s for
image i and Fs introduces the range and TV constraints from
Eq. (6) and Eq. (7) into the problem formulation (S = 2). The
range constraint is directly applied to the image, thus, F1 is
the identity function and D1(i) = {X ∈ RM : ∀k, X(k) ∈
[Xi

min, X
i
max] with Xi

min = 0 and Xi
max = 255. The isotropic

TV smoothness constraint computes F2 = (∇h,∇v) (i.e. the
horizontal and vertical gradients) and D2 is the closed convex
set defined by Eq. 7.

D. A primal-dual solver

We tackle the problem of solving Eq. (9) using the primal-
dual algorithm proposed by Combettes et al. in [16], known as
Monotone Lipschitz Forward-Backward-Forward (M-LFBF)
algorithm. This algorithm, unlike other similar methods, as-
sures a lower computational complexity for problems involv-
ing linear operators as it does not require any matrix inversion
[16]. Furthermore, the block iterative structure of the algorithm
allows for efficient parallel implementations on multi-core
architectures.

III. APPLICATION TO HEVC

A schematic view of the optimization process is proposed
in Fig. 2. At each step of the iterative structure, the current
estimate has to be projected onto the transform bases in order
to estimate the data fidelity and QI validity objectives. This
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projection relies on information extracted from the HEVC
bitstream, which we further detail in the next subsections.

A. Extracting the required HEVC information

We recall that HEVC relies on a hierarchical quadtree
structure: the frame is first split into Coding Tree Units
(CTUs) of fixed size (from 64x64 to 16x16). CTUs are split
(potentially recursively) in Coding Units (CUs), forming the
quadtree structure. Then, Prediction Units (PUs) and Trans-
form Units (TUs) are rooted at the CU level to gather all
the unit information on the prediction and the transform used
respectively. PUs and TUs are independent, so that prediction
and transform can be made at different sizes inside a CU.

1) Intra and Inter prediction: In HEVC, predicting pixel
values rely on Intra or Inter prediction at the PU level. On
the one hand, Intra prediction uses previously decoded units
of the frame as a reference to predict pixel values for the
unit to be encoded. On the other hand, Inter prediction uses
motion estimation and compensation from a set of frames
amongst previously decoded frames of the current Group Of
Pictures (GOP). HEVC always computes a prediction for a
PU. We thus obtain the predicted frame X̃i by concatenating
all reconstructed PUs. Since X̃i is a static parameter in the
proposed framework, PU sizes and types (Intra/Inter) are not
required during the enhancement process.

2) HEVC transforms: HEVC transforms residuals at the
TU level. TUs are square pixel units that can be recursively
subdivided, so different transform sizes are specified (4x4,
8x8, 16x16, 32x32). Due to complexity considerations, HEVC
relies on finite approximations of well-known transforms: the
Discrete Cosine Transform (DCT) and its inverse (IDCT).
Furthermore, a Discrete Sine Transform (DST) is specifically
used for 4x4 Intra units [1]. Two elements are extracted from
the HEVC bitstream to reproduce the same transforms: the
frame type and the TU partitioning (TU map).

3) HEVC quantization: The applicable quantizer is indi-
cated by a Quantization Parameter (QP) ranging from 0 to 51
which serves as an integer index to derive the applicable step
size ∆q [1]. Since HEVC enables QP variation between TUs
of the same frame, the QP map (containing the QP of each
TU) is extracted from the HEVC bitstream to compute the
step-size for each unit.

B. Encoding/decoding configuration

HEVC compliant video streams are generated using the
reference software HM 15.0 [17]. The encoding configuration
re-uses the default Random Access configuration file, with
minor modifications. First, CU-based multi-QP optimization
is enabled by setting the parameter MaxDeltaQP at 2. Second,
since our SR model has not considered HEVC in-loop filters
yet, both the deblocking and sample adaptive offset filters
were turned off in the configuration file. Finally, the Group
Of Picture (GOP) is set to 8 frames. Decoding is performed
with an OpenHEVC decoder [18] which is patched to output
the required elements for the optimization approach.

IV. PERFORMANCE ASSESSMENT

A. Experimental set up

We evaluate the proposed video enhancement framework in
a SS-SR scenario, using a testbed of 6 CIF video sequences.
We select the learning-based approach of Timofte et. al. [10]
as the state-of-the art (SOA) anchor, since it is one of the
best performing approaches in the SS-SR literature. In the
resolution enhancement scenario, the Li operator models a
re-sampling step performed before the encoding. In particular,
the re-sampling consists in a polyphase filtering followed by
a decimation. The polyphase filter weights are determined
using any popular interpolation method, such as: Lanczos
resampling [19], bicubic [20] or filters proposed for SVC
[21] or SHVC [22]. The Low Resolution (LR) compressed
observation are obtained by applying the re-sampling filter
to each video sequence, before HEVC encoding at various
QPs. Note that an initial High-Resolution (HR) estimate is
used as an initializer for the proposed framework. We showed
in [14] that the initialization impacts the framework result,
and in general, the best quality initialization provides the best
quality result. In this work, unless when specifically signaled,
the bicubic version of the polyphase filter is employed (both to
generate the LR observation and to propose an HR estimate).

B. HEVC transform skip mode

In HEVC, a prediction is always computed for a CU, but the
residual might be entirely skipped. This choice is available for
every TU during Rate-Distortion Optimization (RDO) at the
encoder side. This scenario where a TU has no residual (and
an undefined QP) is not naturally modeled by our framework.
In particular, both the data fidelity and the preservation of QI
rely on the block QP and the encoded coefficients zi. On the
one hand, we can remove these blocks from the computation of
both the data fidelity objective and the QI validity criterion in
the optimization framework. On the other hand, we can set the
reconstruction levels zi to zero and pick a default QP for these
skipped blocks. Two natural candidates arise for modeling a
default QP: a value of 1 will imply strong confidence on pixel
values and will limit their potential variation. Another choice
is to rely on the maximum encoding QP available during
the frame encoding. These scenarios are compared in Table
I. The first interesting observation that stems from Table I
is that entirely relaxing the compression related constraints
for skipped units significantly underperforms the two other
methods. This tend to prove that, even for skipped units, it is
beneficial to include compression priors. Then, we show that
using a QP of 1 for these skipped units is not a reliable choice,
particularly at high encoding QPs. Selecting the maximum
available QP during encoding offers stable results over all
QPs, which is thus the selected solution for the remaining
of this work. Note that this result is eventually quite intuitive:
if the encoder RDO decides to skip a TU, it is most probably
because no information is to be coded at the encoding QP,
which is thus a natural candidate for modeling the degree of
confidence we can have in the unit pixel values.
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Empirical QP for skipped units No Crit.
1 Max. *

Sequence Enc. QP PSNR SSIM PSNR SSIM PSNR SSIM

Akiyo
1 35.82 0.969 35.82 0.969 34.46 0.950
15 35.58 0.962 35.38 0.959 33.99 0.954
30 33.52 0.930 33.62 0.931 32.93 0.928

Foreman
1 32.81 0.950 32.80 0.950 32.47 0.950
15 30.30 0.873 30.31 0.873 30.14 0.871
30 32.51 0.930 32.59 0.952 31.98 0.916

Bus
1 27.78 0.875 27.78 0.875 27.53 0.871
15 27.41 0.847 27.42 0.847 26.77 0.801
30 25.38 0.740 25.62 0.743 25.12 0.722

TABLE I
USING DIFFERENT QP SETTINGS FOR SKIPPED UNITS. (*: MAX. DENOTES

THE MAXIMUM FRAME QP)

↓↑ method ↑H ↑SOA ↑Prop. (↑H) ↑Prop. (↑SOA)
↓L (Bic4) 22.87 22.16 22.93 23.35
↓L (Bic8) 22.25 24.17 23.42 24.19
↓L (SV C) 21.45 20.64 23.75 23.85

TABLE II
COMPARING THE PSNR (DB) OF UP-SAMPLING METHODS ↑H , ↑SOA ,
↑Prop (↑H), ↑Prop (↑SOA) W.R.T DIFFERENT DOWN-SAMPLING

FILTERS. (MOBILE, QCIF TO CIF, 1 GOP, QP15)

C. Re-sampling methods

The weights of the down-sampling polyphase filter L (and
its up-sampling counterpart H) can be chosen according to
various interpolation methods. In order to prove the framework
robustness towards these operators, we propose to consider
three different re-sampling approaches. First, we test the
popular 4-tap Bicubic (Bic4) interpolation [20]. Then, we also
combine the filter with an anti-aliasing effect by stretching
the bicubic function to 8 taps (Bic8). Finally, we evaluate
the re-sampling filter proposed in the Scalable Video Coding
(SVC) standard [21]. In Table II, we gather the results obtained
when performing SR of the first 8 frames of Mobile sequence
compressed at QP 15. The behavior of the SOA approach is
typical of learning-based approaches: its performance is only
optimal in the scenario it has been trained for. Therefore, the
SOA approach enables to obtain a 2dB gain when using the
Bic8 filter but fails to improve the quality of other re-sampling
schemes. On the opposite, our approach exhibits consistent
behavior with respect to the degradation filter.

D. General evaluation

We now conduct a general evaluation of the proposed
framework in the SS-SR scenario, and compare our results
to the SOA anchor [10]. As detailed in the previous section, a
fair comparison of the approaches requires to rely on the Bic8
re-sampling filter. For each sequence of the testbed, 32 frames
are down-sampled and compressed at various QPs (from 1 to
40). The average PSNR and SSIM gains throughout all QPs
are measured by the Bjontegaard metric [23], as illustrated in
Table III.

The generic behavior described by Table III is consistent
over all sequences: when using a bicubic initialization, the
proposed approach cannot compete with the results of [10].
However, when using SOA as the initializer, the resulting
quality is slightly increased, which proves the efficiency of
enforcing the SR result to closely fit the available compressed

Scale x2 ↑Prop. (↑H) ↑SOA ↑Prop. (↑SOA)
PSNR SSIM PSNR SSIM PSNR SSIM

Akiyo +1.21 +0.008 +2.96 +0.015 +3.05 +0.015
Foreman +0.60 +0.005 +0.93 +0.010 +1.14 +0.010

Bus +0.80 +0.021 +1.49 +0.045 +1.56 +0.046
Mobile +0.83 +0.05 +1.45 +0.078 +1.56 +0.079
Flower +0.34 +0.023 +0.69 +0.041 +0.76 +0.043

Football +0.88 +0.012 +1.83 +0.036 +1.99 +0.037

TABLE III
EVALUATION OF AVERAGE PSNR (DB) AND SSIM GAINS OVER BICUBIC

(Bic4) INTERPOLATION USING THE BJONTEGAARD METRIC [23].

26.85 dB 29.78 dB 30.01 dB

21.98 dB 23.49 dB 23.57 dB

Fig. 3. Details of the up-sampled images using, from left to right, a Bic8
upsampling, the SOA approach from [10], and the proposed enhancement
framework (initialized with the SOA result). PSNR values are computed on
each image patch.

description. We further illustrate the framework behavior with
visual results in Fig. 3, which compares a reference frame
obtained with bicubic interpolation (left), the SOA result
(middle), and the refined SOA result using the proposed
enhancement framework (right). If the bicubic results tend to
be over-smoothed, the two other approaches enable a more
precise definition of contours and textures.

V. CONCLUSION

In this work, we detail the application of a new type of
video enhancement approach for HEVC compressed video
sequences. The model explicitly uses the available compressed
syntax to build a heterogeneous cost function that combines
compression-related clues and a priori constraints. Convex
optimization enables to efficiently solve the associated min-
imization problem. The framework thus tends to embed the
enhanced result into a domain that closely fits the given
compressed observation. Evaluated in a single source reso-
lution enhancement scenario with HEVC encodings, we show
that our approach provides interesting results in various con-
figurations, while avoiding typical pitfalls of learning-based
approaches. The complexity and real-time capabilities of the
proposed framework have still to be more thoroughly analyzed,
and short-term research focuses on its implementation and
optimization on parallel processing platforms.
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