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ABSTRACT

Specific emitter identification (SEI) is gaining popularity
since it can distinguish different individuals in same type of
radar emitter under complex electromagnetic environment.
However, classification of signals is still a challenging task
when the feature has low physical representation. In this
work, we propose a compressed sensing mask feature in
ambiguity domain, which can significantly improve the
recognition rate of civil flight radar emitters. Furthermore, it
not only represents physical characteristics of measured
radar signals but also contains more time varying
information and alleviates the computational costs. The
physical significance and effectiveness of the proposed
feature can be verified by reconstructing Wigner-Ville
distribution (WVD) from the sparsest ambiguity function.
Experimental results corroborate the highly accuracy and
stability of the proposed approach.

Index Terms—compressed sensing, time-frequency
analysis, feature extraction, radar emitter recognition

1. INTRODUCTION

Radar emitter recognition has become increasingly popular
under the complex electromagnetic environment. It can be
beneficial to both military and civilian. In general, the
analysis framework of radar emitter recognition system is
illustrated as Fig.1. The key step is to extract representative
features. Traditional SEI features consist of radio frequency,
pulse width, spectrum, instantaneous phase [1], wavelet [2],
ambiguity function, ambiguity function representative-slice
[3], three-dimensional distribution [4], etc. However, when
it comes to current complex conditions, such methods prone
to work ineffectively.

Fig.1. The Emitter Recognition System

Ambiguity function representative-slice [3] is proposed
to efficiently eliminate the cost in time and memory since it
uses a slice of the whole time-frequency plain. However, it
has some drawbacks in certain circumstances:
(1) This method cannot cover all situations, because

representative-slice derives from posteriority. And it
focuses on frequency resolution of signals, but it
ignores time varying information including modulation
types and subtle characteristics signals emitted.

(2) The representative-slice subjects to specific emitter
types. It performs inaccurately and sometimes unstably.
Also, it cannot optimize instantly since additional
samples may change the position of representative-
slice then resulting in recalculation of whole feature set.
In order to surmount these limitations, it is appreciable

to construct a more meaningful feature to classify, recognize
and identify specific emitters. Therefore, we extract a
compressed sensing mask (CS-mask) feature from
ambiguity function (AF). The compressed sensing (CS) can
reduce the redundancy of data for one-dimensional time
series as well as two-dimensional images. Mathematically,
CS is based on l1-norm optimization. The K sparse N point
signal in a specific domain can be characterized by M
measurements (M>K, M<<N). It is worth emphasizing that
CS may transform a non-stationary signal into a sparse
domain. In particular, Patrick Flandrin and Pierre Borgnat
developed the time-frequency localization by exploiting
sparsity constraints and compressed sensing [5]. It is noticed
that the goal is to improve the time-frequency signal
resolution and inhibit cross-terms. In this paper, compressed
sensing is inspired as the sparse ambiguity function feature
for large sets of civil flight radar emitter recognition. It can
effectively enhance the recognition rate with less
computational cost. Moreover, this feature extraction
approach contains both time and frequency details compared
with the traditional methods.

2. TIME-FREQUENCY FEATURE BASED ON
COMPRESSED SENSING

Srdjan Stanković and Irena Orović reconstructed and
restored signals by compressed sensing approach [6]. It is
remarked that ambiguity domain can be used as the sparse
optimization, followed by the l1-norm minimization scheme
in the sparsest time-frequency distribution:
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Where ( , )A   is ambiguity function and ( , )WD t f is Wigner-
Ville distribution, one of the common tools in time-
frequency distribution, defined as:
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If considering WVD and ambiguity as finite length N points
sequences, then the matrix correlation of them as follows,
which are related by two-dimensional Fourier transform:

( 1) ( ) ( 1)f N N N D NA W     (3)
Ψ is 2D Fourier transform matrix in a form of N×N. In order
to reconstruct Wigner-Ville distribution with higher
resolution and noise suppression from sparse ambiguity
function, the measurement matrix Φ in a size of M×N using
in the compressed sensing is defined to reduce
measurements. M sparse measurement of ambiguity vector,
or feature Mask

MfA )1(  is obtained by (4):

)D(NN)(NNM)f(NNM
Mask
Mf WΨΦAΦA 11)1(   (4)

It is important to select proper samples in ambiguity
domain, since with appropriate ambiguity function mask [6],
a better and representative radar signal feature can be
extracted to improve the rate of identification. Typically, the
radar emitter identification via ambiguity representative-
slice [3] proposed by L. Wang and H.B. Ji can indeed lower
the computational costs and have a distinguished
performance in moving radars and static emitters.
Unfortunately, regarding slices of ambiguity function with
shift frequency near zero as a major representative feature of

radar emitter pulse might not make a full sense in physical.
In addition, frequency mask is always used as a sparsity
matrix to restore and reconstruct signal, which has never
been used as a feature extraction approach in radar emitter
identification. Hence, we proposed a robust and persuasive
compressed time frequency sensing feature.

3. CS-MASK FOR EMITTER IDENTIFICATION

The ideal feature in sparsest ambiguity domain is noted as:

0,),(  f
A
ideal AF

(5)
Where ),(  , according to [5], ideal feature should
include as much as information while as sparse as data. The
sparse feature can be obtained according to CS theory,
which can be optimized as:
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Where ε denotes user-specified bound, the 2D Fourier
transform of ambiguity function is WVD, thus, the
effectiveness and physical characteristics of sparsest
ambiguity function can be examined by transformed WVD.
The characteristics carried by compressed sensing mask
from center ambiguity function are illustrated in Fig.2, The
first group Fig.2(a-d) is an example of a chirp signal,
Fig.2(e-g) analyze a multi-component signal form of chirp
and secondary frequency modulation signals. Both signals in
two groups own 1000 points. The ambiguity function and
WVD are shown in formula (1). Take ε=0.2, we choose a
mask at the center of ambiguity function with size 31*31
size up to 961 points, which satisfies (6-7). The 2D inverse
Fourier transform of the masked ambiguity function is
presented in Fig.2(d) and (h), which are WVDs.
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Fig.2. The time-frequency distribution recovery of masked ambiguity function
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Fig.3. the CS-mask of a sample in Data set I

From Fig.2, the mask transformed from AF domain to WVD
contains as many as signal’s frequency details compared
with original WVD. What’s more, the cross-term has been
restrained. The relative error of reconstruction reaches to
4.96*10-6, which can be accepted experimentally.

Fig.3 is the localization of 3-D compressed sensing
mask feature from ambiguity function of the real measured
radar signal pulse, in which x axis is time delay, y axis is
Doppler frequency shift, and z label is amplitude of
ambiguity. Most of the energy is concentrated in the center
of the mask. Nonzero area is 23*23 while whole AF matrix
contains 450*450 points. Verified by simulations, it is
feasible that the feature can represent the whole ambiguity
function mathematically. In addition, the algorithm of the
program is demonstrated as follows:

4. EXPERIMENT RESULTS

In experiments, the effectiveness of CS-mask feature is
tested. All of the test signals are measured signals. Each
sample containing one pulse has been detected from a long
period record. For example, Data set I contains 10 classes of
signal sampled from 10 static radars, and these radar
emitters are of the same type with the same parameters. In
addition, Data set I and II are static radars samples, while
Data set III and IV are from moving emitters whose signals
are from different civil flights’ meteorological radars. The
number of samples in each class is shown in Fig.4.
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Fig.4. The sample distribution of three data sets

4.1. Experiment 1: information expression on CS-mask

Experiment mainly contrasts the proposed method and
ambiguity function representative-slice [3]. The first signal
is the 1st in Data set I which belongs to class ONE, the
WVDs of the two methods are shown in Fig.5(a-b). And
Fig.5(c-d) illustrate the WVDs of the 335th sample whose
label is class SIX. For the signal of 450 points, the CS-mask
selects a central area with size 23*23 from which AF matrix
includes 450*450 points. The radar signals in Data set I are
approximately sinusoid with a frequency dropping at the
beginning of the pulse. The WVD generated by CS-mask
includes more time varying details of the signal compared
with that generated by representative-slice of ambiguity
function (AF-RS).
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Fig.5. The comparison of recovered WVD using CS-mask

and AF-RS features. (a-b) represent a sample in Data set I no.1,
(c-d) represent a sample in Data set I no.353.

The algorithm of the program
1st . Pre-processing:
1.1 Radar pulses are demeaned, de-noised, normalized

and aligned;
1.2 Remove the bad pulses and class which include

missing data and insufficient data of class.

2nd. Feature extraction:
2.1. Batch process and transform the radar signal

pulses into ambiguity function domain and generate the
CS based ambiguity function mask feature.
2.2. optimize feature using formulas (6-7).

3rd. Classification & identification:
With the AF mask feature, classification is performed

by applying extreme learning machine (ELM) to the
measured data.
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Moreover, it indicates the appearance moment of pulse.
Although the AF-RS owns a good estimation of carrier
frequency, the CS-mask contains more instantaneous
frequency information especially when the emitter is LFM
or other complicated modulation type.

4.2. Experiment 2: identification based on CS-mask

We extract feature from three data sets. Then randomly
choose samples from each class under a training percentage
rate ranging from 10% to 70%, and the remaining samples
are used for testing the accuracy of classification. The
classifier is ELM, a mono-layer random neural network,
owing less time consuming and parameter-free. Results are
shown in Fig.6. The proposed method is represented in red
dashed line. From the result, the CS-mask owns better
performance in accuracy and robustness in the first and
fourth sets, compared with power spectrum estimation
(PSE), cyclic spectrum (Cyc-sp), the zero slice of ambiguity
function (AF-slice), and AF-RS. Particularly, in the second
and third data sets, the feature PSE performs almost equally
or sometimes better than proposed method, which means
PSE feature is indeed suitable for Data set II and III than
other two sets. However, CS-mask feature is much more
prevalent and stable than other features, no matter what kind
of data sets. The details of recognition accuracy are
demonstrated in Table.1.

Table.1. The performance of classification
Training rate 10% 20% 30% 40% 50% 60% 70%

I

CS-mask 93.42 95.59 95.64 96.62 94.64 96.48 98.33

PSE 39.34 27.82 29.73 40.78 49.62 51.57 61.08

Cyc-sp 56.14 53.79 66.57 69.09 69.52 69.91 71.75

AF-RS 80.10 80.62 82.10 81.82 80.86 73.01 76.00

II

CS-mask 92.01 90.75 92.87 90.57 90.03 93.17 90.16

PSE 93.10 92.18 90.61 91.78 92.80 94.01 89.84

Cyc-sp 92.25 83.82 85.15 66.35 63.93 56.80 51.02

AF-RS 88.69 91.27 89.96 91.06 88.59 89.58 87.70

III

CS-mask 96.74 99.39 96.67 97.54 98.72 99.51 98.72

PSE 98.63 99.10 98.68 98.95 98.28 100.0 98.11

Cyc-sp 83.24 81.23 82.91 85.82 77.16 83.59 82.78

AF-RS 82.91 78.20 79.28 81.09 83.13 83.25 83.02

IV

CS-mask 82.07 83.22 79.41 81.61 82.13 80.74 80.10

PSE 10.45 12.64 13.18 15.49 12.30 12.98 10.24

Cyc-sp 18.70 17.33 19.70 29.01 23.81 32.95 34.63

AF-RS 78.83 79.44 77.53 78.07 78.50 75.97 68.78
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Fig.6. The correct rate of recognition

5. CONCLUSIONS

In this paper, a compressed sensing based feature ambiguity
function mask is proposed to serve as a time-frequency
feature for emitter recognition. The central mask of
ambiguity function can bring frequency information just
using same length as signal. This approach can not only
avoid high dimension feature brought by general time
frequency domain but also cover more time varying
information of signals.

Compared with other representative feature, the CS-
mask method possesses no less accuracy in civil flight’s
meteorological radar identification, which owns low chirp
rate. When facing signals emitted with more sophisticated
modulation, the CS-mask can present more time varying
detail and low feature dimension. The performance of CS-
mask for FM signal is worth to be tested.
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