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ABSTRACT

Demodulation consists in factorizing a signal as a product of a
high-frequency component (carrier) and a low-frequency compo-
nent (modulation). Most of the classical demodulation methods
developed for telecommunications cannot be transposed directly on
mechanical problems. In gearbox vibration monitoring the assump-
tion that the carrier energy is concentrated on a single harmonic is
not verified. This paper shows the limits of this assumption and
proposes a new approach based on optimization, more adapted to
line spectrum signals.

Index Terms— Fault diagnosis, Multi-carrier demodulation, Vi-
bration signal, Singular Value Decomposition, Source reconstruction

1. INTRODUCTION

Gears are one of the most critical parts of mechanical systems, es-
pecially in the aeronautics industry due to both high speed rotation
and heavy load of aircraft and helicopter engines. A damage lately
detected in the gearbox may lead to catastrophic failure. Therefore,
development of gear fault diagnosis techniques based on vibration
analysis has been conducted for more than four decades [1, 2, 3].

Vibrations generated by rotating machines are usually regarded
as a meaningful signature of their health state, instantaneously ex-
pressing any change in the structure or operating regime of the sys-
tem [4]. Acoustic emission was recently used to detect incipiant
faults in mechanical systems [5, 6, 7], but its use and interpreta-
tion become difficult in extreme measurement environment. Thus,
due to easier implementation and lower signal-to-noise ratio, direct
vibration measurement using accelerometers remains the standard
technique for early fault detection in mechanical systems [8, 9, 10].

A major challenge of this field is isolating the signal of inter-
est out of a global vibration resulting from several moving parts
of the system under study. Much research has been carried out
on the general topic of recovering a set of signals once they have
been combined one way or another [11, 12, 13, 14] . This issue is
not specific to mechanical systems, and actually takes its roots in
telecommunications rather than in vibration analysis [15, 16]. Blind
source separation in particular, where the signals to estimate are (lin-
early) combined in an unknown way, gave rise to an abundant lit-
erature [17, 18]. Most proposed solutions rely on the assumption
that sources are statistically independent, as does for instance the
widespread Independent Component Analysis (ICA), but they re-
quire as many sensors as sources [19]. When working with com-
plex mechanical systems such as aircraft engines, there are typically
many vibration sources and few sensors. As compensation, signals

have a very structured frequency content. This is leveraged for in-
stance by Synchronous Average, where the measured time series is
sliced into small sequences of a given duration [20, 21, 22]. Averag-
ing these slices then filters out the sources having a period different
from the chosen duration. This procedure requires a single sensor
only, which is also the case of the method we will discuss.

In the present paper we go further into using prior knowledge of
the shape of the signal of interest. Vibrations produced by a spur gear
have been modeled as a product of two periodic functions related to
the gearboxs kinematic [23]. The issue discussed here is recover-
ing the contributions of each function from the global signal while
removing additional unwanted components. The main contribution
of the paper is the formulation as an optimal reconstruction prob-
lem which, although non-quadratic, is shown to have a closedform
solution based on Singular Value Decomposition (SVD). Once the
separation step is performed, the status of the machine can be iden-
tified and characterized with statistical indicators (RMS, kurtosis...),
spectral or cepstral analysis.

2. PROBLEM SETUP

We consider a gearbox reducer made of two wheels, wheel 1 and
wheel 2, having W1 and W2 teeth respectively. In stationary condi-
tions, i.e. at constant rotation speed, the gears have rotation frequen-
cies f1 and f2 (Hz) respectively. The meshing frequency, which
corresponds to the engagement speed between the wheels, is defined
as: fe = W1 × fgear1 = W2 × fgear2. A gearbox vibration signal
is usually represented as an amplitude-modulated signal [24], as in
Equation (1) below:

s(t) = se(t)× (1 + sgear1(t) + sgear2(t)), (1)

where s(t) is the measured signal, the first factor se(t) is a kind of
”average” gear mesh signal and the second one contains two (peri-
odic) perturbations sgear1(t) and sgear2(t) related to angular posi-
tions of wheels 1 and 2. Of course, sgear1(t) has frequency f1 and
sgear2(t) has frequancy f2.

When a default appears on one of the wheel teeth, the associated
modulation function sgear1 or sgear2 is affected. In order to improve
detection and localization of the incipiant fault, a focus is made in
the present paper on the breakdown of the measured signal s(t) into
its gear mesh signal se(t) and wheels components sgear1(t) and
sgear2(t).
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3. DECOMPOSITION OF A PRODUCT SIGNAL

In the present section, recovering signals se(t), sgear1(t), sgear2(t)
of Equation (1) from s(t) is cast into the more general framework of
recovering two signals s1(t) and s2(t) from their product s(t):

s(t) = s1(t)× s2(t). (2)

This question is formulated as a non-quadratic optimisation problem
and a closed-form solution is derived. Note that factor s2(t) takes
here the place of (1 + sgear1(t) + sgear2(t)). This is not restrictive
as sgear1(t) and sgear2(t) have separated spectral supports.

3.1. Notations

The following notations will be used:

• si(t): Time signal, index i being 1 or 2.

• Ni, fi, Ti, Ii: Number of harmonics, frequency and period of
si(t), Ii denoting the discrete set [−Ni, Ni].

• Ttot,K1,K2: Respectively, lowest common multiple of the
periods T1 and T2 and integers K1 and K2 defined by the
factorizations Ttot = K1T1 = K2T2.

• ||·||: Modulus if applied to a complex number, or 2-norm if
applied to a Ttot-periodic signal: ||x||2 =

∫ Ttot

0
x(t)2dt.

• D(N,T ): Set of the T−periodic functions whose firstN har-
monics at most are non-zero.

• ŝi[k]: k-th harmonic of the spectrum of si(t) regarded as a
Ttot-periodic signal (which makes sense because all signals
at play have a period dividing Ttot ). Index k can be negative.

• Op: Set of unitary matrices of size p× p.

3.2. Demodulation as an optimisation problem

Demodulation is widely used in telecommunications, where the car-
rier energy is usually concentrated on one harmonic. But it is easily
noticed that if several harmonics are visible, then classical deconvo-
lution, proposed by Mc Fadden in [4] and using time synchronous
averages and Hilbert transform, ignores most of the available infor-
mation. This case is encountered when monitoring gearbox vibra-
tions, as the high-frequency component s1(t) stems from a meshing.

In the multi-carrier demodulation we propose, the estimated
couple (s̃1(t), s̃2(t)) is defined as the solution of an optimization
problem:

(s̃1, s̃2) = argmin
s1 ∈ D(N1, T1)
s2 ∈ D(N2, T2)

(
||s(t)− s1(t)s2(t)||2

)
. (3)

In spite of the quadratic term s1(t)s2(t) appearing in the L2 norm,
this optimization is tractable under the hypothesis

2N2f2 < f1. (4)

Proposition 1 shows it can then be reduced to a low-rank approxima-
tion problem. The result will be shown step by step using lemmas 1
and 2.

Lemma 1. Let C(s1, s2) = ||s(t)− s1(t)s2(t)||2 be the cost func-
tion appearing in Eq. (3). In the Fourier domain, C(·, ·) can be
written as:

C(ŝ1, ŝ2) = C1(ŝ1, ŝ2) + C2, (5)

where C2 is independent from (ŝ1, ŝ2) and:

C1(ŝ1, ŝ2) =∑
(i1,i2)∈I1×I2

||ŝ[K1i1 +K2i2]− ŝ1[K1i1]ŝ2[K2i2]||2 .

Proof. Using Parseval’s theorem, we can express C(ŝ1, ŝ2) as

C(ŝ1, ŝ2) =

+∞∑
i=−∞

||ŝ[i]− (ŝ1 ∗ ŝ2)[i]||2 ,

with ŝ1 ∗ ŝ2 the convolution product of ŝ1 and ŝ2: (ŝ1 ∗ ŝ2)[i] =∑+∞
j=−∞ ŝ1[i − j]ŝ2[j]. The value of ŝ1[i] (resp. ŝ2[i]) is non-zero

only for i ∈ {K1i1, i1 ∈ I1} (resp. i ∈ {K2i2, i2 ∈ I2}), thus
(ŝ1 ∗ ŝ2)[i] is non-zero only for i ∈ I = {i1K1 + i2K2, i1 ∈
I1, i2 ∈ I2}. This suggests the following decomposition:

C(ŝ1, ŝ2) =
∑
i∈I

||ŝ[i]− (ŝ1 ∗ ŝ2)[i]||2 +
∑
i 6∈I

||ŝ[i]||2 . (6)

The second term of (6) is independent from (ŝ1, ŝ2) and will be
denoted by C2. Let us denote by C1(ŝ1, ŝ2) the first term of
(6). Hypothesis (4) ensures that each element of I is reached by
only one combination K1i1 + K2i2 for i1 ∈ I1 and i2 ∈ I2.
Thus, the sum defining C1(ŝ1, ŝ2) can be safely parameterized
by i1 ∈ I1 and i2 ∈ I2 instead of i ∈ I: C1(ŝ1, ŝ2) =∑

(i1,i2)∈I1×I2
||ŝ[K1i1 +K2i2]− (ŝ1 ∗ ŝ2)[K1i1 +K2i2]||2.

Still because of the hypothesis (4), we have: (ŝ1 ∗ ŝ2)[K1i1 +
K2i2] = ŝ1[K1i1]ŝ2[K2i2] (there cannot be more than one non-
zero term in the infinite sum defining (ŝ1 ∗ ŝ2) above). This gives
the desired expression for C1(ŝ1, ŝ2).

The term C2 can be dropped when optimizing over the couple
(ŝ1[·], ŝ2[·]). These two series consisting mostly of zeros, we intro-
duce two column vectors S1 ∈ R2N1+1 and S2 ∈ R2N2+1 contain-
ing only the entries multiple of K1 (resp. K2):

S1(1 +N1 + i1) = ŝ1(K1i1) for i1 = [−N1, . . . N1],

S2(1 +N2 + i2) = ŝ2(K2i2) for i2 = [−N2, . . . N2].

This allows re-writing the optimization problem (3) under an advan-
tageous matrix form:

Lemma 2. The cost C1(ŝ1, ŝ2) of Lemma 1, written as a function
of S1 and S2, takes the following matrix form:

C1(S1, S2) =
∣∣∣∣∣∣MS − S1S

T
2

∣∣∣∣∣∣2
Fro

, (7)

where ||·||Fro denotes the Frobenius norm andMS is a (2N1+1)×
(2N2 + 1) matrix defined as:

MS(1 +N1 + i1, 1 +N2 + i2) = ŝ(K1i1 +K2i2). (8)

Proof. Equation (7) is mere reordering of the terms of C1.

When S1 and S2 describe their definition domain, the product
S1S

T
2 exactly describes the set of rank-one matrices. Consequently,

minimizing C1 boils down to a low-rank matrix approximation solv-
able by SVD-factorization:

Proposition 1. The optimization problem (3) can be solved in the
Fourier domain through the following steps:

1. Compute ŝ[.] and build matrix MS (Equation (8)).
2. Perform the SVD-factorization MS = UDV T , with U ∈
O2N1+1, V ∈ O2N2+1 and D a diagonal matrix.

3. Define S1 = D1,1U:,1 and S2 = V:,1.
4. Use the inverse Fourier transform to retrieve s̃1 and s̃2.
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4. SIMULATION AND EXPERIMENTAL RESULTS

The multi-carrier demodulation method described in Proposition 1
is now applied to simulated and real signals and the results are pre-
sented in subsections 4.1 and 4.2 respectively.

4.1. Simulation

A simulated signal s(t) is generated, multiplying two periodic sig-
nals s1(t) and s2(t) and adding a white gaussian noise wt as in
Equation (9) described below:

s1(t) =
∑N1

n1=0An1 cos(2n1πf1t+ ϕ1),

s2(t) =
∑N2

n2=0An2 cos(2n2πf2t+ ϕ2),
s(t) = s1(t)× s2(t) + wt,

(9)

with An1 and An2 the amplitudes of the n-th harmonics and ϕ1 and
ϕ2 the phases of s1(t) and s2(t) respectively.

For this example, the signals have frequencies f1 = 500Hz and
f2 = 20Hz respectively and N1 = 9 and N2 = 5 harmonics, in
order to be close to gearbox vibration characteristics. It has to be
precised that the number of harmonics of the low-frequency func-
tion has to be chosen carefuly in order to avoid the aliasing, i.e., to
ensure Hypothesis (4). Figure 1 shows an example where s1(t) and
s2(t) are recovered from s(t), in very noisy measurement conditions
(SNR=-10dB). Both high-frequency and low-frequency signals are
almost perfectly reconstructed on the temporal representation.

(a)

(b)

(c)

Fig. 1. Graphical representation of the simulated signal in a very
noisy background (signal-to-noise ratio = -10dB). (a) represents the
superposition of the noisy signal and the original product, (b) and
(c) present respectively the reconstruction of the high-frequency and
low-frequency signals.

In order to assess the performances of the proposed decomposi-
tion method, several Monte-Carlo simulations have been carried out.
The influence of the number of parameters in the function (i.e., the
number of harmonics N1 and N2) on the reconstruction error of the

product signal has been checked. The reconstruction error Err is
defined by:

Err =
||s(t)− s̃1(t)s̃2(t)||2

||s(t)||2
× 100, (10)

and plotted as a percentage.
For the first test, the number of harmonics for s1 ranges from

N1 = 2 to N1 = 17 and respectively for s2 from N2 = 2 to N2 =
11. Figure 2 shows that the reconstruction error increases linearly
whith the number of harmonics and for a given SNR, the number of
harmonics deteriorates the reconstruction. It can also be noted that
the error stays below 0.12% (here SNR = 0dB). Other signal-
to-noise ratios have been tested, from −20dB to +20dB, and the
relation between the number of parameters and the reconstruction
error stays approximately linear. The reconstruction error reaches
12% in the most noisy case, i.e., SNR = −20dB, which is widely
acceptable in mechanical applications.
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Fig. 2. Relative error of the reconstruction signal for a SNR=0dB
and for several numbers of harmonics for each function.

A second test has been performed to check the influence of the
signal-to-noise ratio and the number of harmonics. Figure 3 displays
the average reconstruction error obtained on 1000 Monte-Carlo runs
for two different settings: (a)N1 = 9 whileN2 ranges fromN2 = 2
to N2 = 11 and (b) N2 = 5 while N1 ranges from N1 = 2 to
N1 = 17.

In both cases, the quality of the reconstruction is deteriorated
with the increase of background noise and with the number of har-
monics. We see that reconstruction error stays below 10% for all
signal-to-noise ratios until −25dB, meaning the noise is correctly
filtered by the method and the signals are well recovered.

4.2. Gearbox signals

We come now to the initial motivation of the proposed demodula-
tion method. Equation (1) is commonly used in gear fault detection
to model the measured vibration signal. This choice being mostly
based on the empirical observation that side bands appear in the vi-
bration spectrum around the meshing harmonics, we will challenge
it applying our method to real data. The signals we used stem from
a test bench instrumented by CETIM and are publicly available.

The gears have 20 and 21 teeth respectively and the measure-
ments are made at a sampling frequency of 20 kHz. The rotation
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(a)

(b)

Fig. 3. Reconstruction relative error of the product function for sev-
eral noisy environments. (a) represents the influence of the number
of harmonics for the low-frequency function while (b) represents the
influence of the high-frequency function’s number of harmonics for
several SNR in both case.

frequencies of gears are f1 = 16.75Hz and f2 = 17Hz respec-
tively. To match the theoretical model of spur gear signal (Equa-
tion (1)) to Equation (2) we set s1(t) = smesh(t) and s2 = 1 +
sgear1(t) + sgear2(t). As the frequencies of sgear1 and sgear2 are
different, they are easily separated filtering s2. In this study, the de-
composition is based on 16 harmonics of the meshing signal and 8
harmonics of each gear signal. The spectra of the original signal and
the reconstructed one are overlaid in Figure 4.

Fig. 4. Overlay of the original and reconstructed signals’ spectra.

The spectrum is not fully reconstructed. We see that about half
the side bands energy is captured by the product approximation (red).
This can be due to the aliasing present in the gear spectrum, as in
this application there is no certainty that the condition (4) is fully
respected, or additional sources, and solving this question would re-
quire further investigation of the mechanical processes at play. In
any case, the product hypothesis may be an interesting approxima-
tion of the signal but not its perfect representation.

To recover sgear1 and sgear2, it is still possible to band-pass
filter s2. The outputs of the optimum decomposition are represented
in Figure 5, for a sound run and for a run where a fault has been
diagnosed on one gear. We see that considering each component

(a)

(b)

Fig. 5. Temporal representation of the reconstructed signals (mesh-
ing, gear 1 and gear 2) for a sound run (a) and a faulty run (b).

of the signal separately makes monitoring easier. When a failure
appears, it becomes visible on the concerned recovered signal, as in
Figure 5. Then, traditional fault indicators can be calculated directly
on sgear1 and sgear2, allowing early detection of the fault as well as
its localization.

5. CONCLUSION

This paper presents a new simple approach to the issue of separating
the components of a product signal measured by a single vibration
sensor. The returned signals are a meaningful representation of its
vibration content, and a promising tool for early diagnosis and de-
fault localization. In future work, the method will be extended to
more elaborated signals, including more complex gearboxes and si-
multaneous amplitude and phase modulation. A study will also be
carried out on using the residual signal for fault detection.
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