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ABSTRACT

Heart rate variability (HRV) from electrocardiograms (ECG) is a
well-known diagnostic method for the assessment of autonomic ner-
vous function of the heart. A more convenient approach to assess
cardiac function is by using Photoplethysmography (PPG) wave-
forms where pulse rate variability (PRV) replaces HRV. However,
the unavailability of robust detection algorithms for PPG signals has
prevented the medical market from providing clinical diagnosis us-
ing PRV and from measuring biological information for wellness
purposes, such as sleep stage, stress state, and fatigue.

This paper provides a robust peak and onset detection algorithm
for beat-to-beat (B2B) pulse interval analysis using PPG signals. We
demonstrate our method through large data collection with the Ana-
log Devices (ADI) multi-sensory watch platform with high cover-
age, sensitivity, and low Root Mean Square of Successive Difference
(RMSSD) as compared to the B2B results from ECG signals.

Index Terms— Heart Rate Variability, Photoplethysmography
(PPG), Pulse Rate Variability (PRV), Beat-to-Beat, Delineation.

1. INTRODUCTION

Heart Rate (HR) monitoring is a key feature in many existing wear-
able and clinical devices but a function to measure the continuous
heart rate variability (HRV) using beat-to-beat (B2B) pulse interval
has not yet been provided with these devices. HRV consists of
changes in the time intervals between consecutive heartbeats called
interbeat intervals extracted from electrocardiogram (ECG) [1].
HRV contains well known biometric information reflecting the sym-
pathetic and parasympathetic activities of the autonomic nervous
system [2]. Researchers have widely used HRV as a tool to support
clinical diagnosis and measure biological information for wellness
purposes, such as sleep stage, stress state, and fatigue [2, 3]. Given
the technical requirements of ECG measurements, the signal may
not always be available in accident/catastrophe sites, battlefields, or
areas where ECG can cause electrical interference [4].

Pulse rate variability (PRV) extracted from Photoplethysmogra-
phy (PPG) signals could be used as an alternative to HRV [5–7].
The PPG signals are obtained by illuminating human skin using an
LED and by measuring the intensity changes due to blood flow in
the reflected light by a photodiode. Furthermore, PPG can provide
relevant information about the cardiovascular system, such as heart
rate, arterial pressure, stiffness index, pulse transit time, pulse wave
velocity, cardiac output, arterial compliance, peripheral resistance,
and others [8–10]. However, the performance of PPG-based algo-
rithms can be degraded by poor blood perfusion, ambient light, and
most importantly, motion artifacts (MA) [11]. Many signal process-
ing techniques have been proposed to remove the MA noise includ-
ing the Analog Devices Inc. (ADI) motion rejection and frequency

tracking algorithm by using a three-axis acceleration sensor placed
close to the PPG sensor.

It is important to extract significant points such as systolic
peaks, onsets, and dicrotic notches from PPG waveforms accurately
for PRV analysis [12]. The onset of the PPG waveform is due to
the commencement of blood expulsion from the heart to the aorta,
while the dicrotic notch is the end of blood ejection or the closure
of the aortic valve. The unavailability of robust detection algorithms
for PPG signals has, at least partially, prevented researchers from
fully conducting PRV analysis using PPG. Some previous work on
PRV ignores the fiducial points [13], some reported using manual or
empirical detection of the systolic peaks [14], and some are based
on non-validated time window-based algorithms to obtain the pulse
peak [15].

This paper proposes a robust peak and onset detection algorithm
which uses a delineation method originally proposed for Arterial
Blood Pressure (ABP) waveforms [16]. It is important to note that
PPG signals using wirst-worn wearable devices contain many mo-
tion artifacts, baseline fluctuations, reflected waves and other noise
that can affect the behaviour of detection algorithms [6]. Therefore,
the data is pre-processed first before feeding it to the B2B extraction
model. The automatic delineator used in this work is a hybrid ap-
proach in which different pre-processed signals from raw PPG and
the first derivative of the signals are used to extract both the peaks
and onsets. We use a large database collected using our ADI watch
platform that provides synchronized PPG and ECG signals. In terms
of memory footprint, this algorithm is light and can be used as an em-
bedded algorithm in the ADI watch platform. The algorithm is val-
idated and compared with the B2B results from ECG signals using
coverage, sensitivity, positive productivity and Root Mean Square of
Successive Difference (RMSSD) [17].

The paper is organized as follows. Section 2 defines the B2B al-
gorithm components and provides a block diagram of the approach.
In Section 3, the results from applying the proposed algorithm on the
PPG signals collected from the ADI platform are compared to ECG
B2B results. Finally, section 4 concludes the paper.

2. BEAT-TO-BEAT ALGORITHM BASED ON THE PPG
MORPHOLOGY

In this section, we explain the details of the proposed B2B algorithm
for wrist PPG signals comprised of (i) pre-processing, and (ii) high
resolution B2B extraction modules. A block diagram of the algo-
rithm is shown in Fig. 1.

2.1. Pre-processing

The susceptibility of the PPG signal to poor blood perfusion of the
peripheral tissues and motion artifact is well known [18]. In order
to minimize the influence of these factors in the subsequent phases
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Fig. 1: Flowchart of the proposed B2B extraction algorithm comprised of (i) pre-processing and (ii) high resolution B2B extraction.
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Fig. 2: PPG plots: (a) Raw signal, (b) after filtering, (c) after filtering and AGC, and (d) the delineation plot.

of the PPG analysis for B2B estimation, a pre-processing stage is
required. This step is comprised of:

1. Framing and windowing

2. Bandpass filtering (0.4Hz-4Hz)

3. Automatic Gain Control (AGC) to limit the signal level

4. Signal smoothing and baseline wandering removal

The PPG input data is processed using a window of T0 seconds and
further blocks are processed by moving the window with mT0 (i.e.,
m = 3/4) overlap. A bandpass filter is then required to remove both
high frequency components (such as power sources) of the PPG sig-
nals as well as low frequency components such as changes in capil-
lary density and venous blood volume, temperature variations, and
so on. Fig. 2 (a-b) shows a PPG signal before and after filtering.
The filter has a cut off frequency at 0.4 and 4 Hz. The fundamental
frequency of the HR ranges between 0.4 to 3 Hz. Therefore, using a
range that is a little higher for B2B estimation allows us to include

harmonics that emphasize the beat times. Sudden spikes are removed
from the filtered signals using a median filter. Then, an AGC mod-
ule limits the signal level to ±V volts in order to verify the selected
peaks by checking the amplitude of the signal at a later stage. The
durable PPG measuring process for HRV unavoidably introduces an-
other type of artifact, such as baseline wandering. Consequently, a
low pass Finite Impulse Response (FIR) filter is used to smooth the
array of the PPG samples in the frame (shown in Fig. 2 (c)), to re-
move the baseline wandering noise, and to get a smoother signal for
the delineation module.

2.2. High resolution B2B extraction module

The B2B extraction algorithm consists of the following modules:

1. Interpolation

2. Delineation

3. High resolution B2B extraction
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Fig. 3: ADI platform and tool: (a) ADI watch Gen 2 data collection platform , and (b) ADI mobile iOS app interface (Dashboard, PPG, ECG)

4. Signal quality metric

The output of the pre-processing module is fed to an interpolation
block to increase the accuracy of the B2B extraction algorithm. If
a PPG segment from t0 to tT is given in the first frame with B2B
interval of b0 and bT , we linearly interpolate the B2B interval val-
ues using n points between the endpoints and then extract a high
resolution B2B (e.g, 1 msec resolution) from b0 and bT . Next, the
delineation module relies on both the signal morphology as well as
rhythmic information to extract the peaks and onsets. Therefore, not
only are the systolic peaks needed, but also the onsets and dicrotic
notches should be reported for B2B detection. The proposed delin-
eator is theoretically similar to [12,16] which is adapted to the wrist
PPG signals by using a pair of inflection and zero-crossing points
from the first derivative of the signal. Fig. 2 (d) plots both inflec-
tion and zero-crossing points for PPG characterization. For the zero-
crossing points, the signal is processed with a zero phase distortion
filter which minimizes start-up and ending transients by matching
initial conditions. This is to make sure that the time-domain features
are preserved after filtering. Note that the onsets from the derivative
of the PPG waveform correspond to zero-crossing points before a
maximal inflection, while the systolic peak relates to zero-crossings
after that inflection point. The signal quality metric used for this
B2B algorithm is clarity and indicates the extent that a signal has a
tone. This metric was originally proposed in [19], where a normal-
ized squared difference function (a form of auto-correlation func-
tion) is used for finding the periodicity of the signal. We use this
metric to decide when the B2B algorithm is confident to report the
peaks and onsets.

3. EVALUATION RESULTS FROM ADI WRIST
PLATFORM

Our PPG B2B algorithm results are compared to results from the Pan
Tompkin’s algorithm [20] which is a well recognized algorithm for
ECG peak detection. Data was collected to evaluate our algorithm
using the ADI Vital Signs Monitoring (VSM) wrist watch platform.
The ADI VSM iOS application was used to interface with the watch
over a bluetooth connection. The ADI wrist watch includes a PPG
sensor used to collect PPG signal from the subject’s wrist. The ECG
signal was also collected on the ADI wrist watch. Three ECG elec-
trodes were attached to the subject’s chest area. Wires from these
electrodes were connected to the ADI wrist watch where the signals
were processed and logged concurrently with the PPG signal. This
platform provides synchronized PPG and ECG signals. Fig. 3(a)

shows the ADI wrist watch used for data collection while Fig. 3(b)
shows the iOS app interface and sample signals obtained from the
platform.

3.1. Evaluation Metrics and Results

Before computing the beat to beat metrics, it is important to have an
outlier removal process that identifies missing/extra peaks in the Pan
Tompkin’s algorithm outputs and our PPG beat-to-beat algorithm
outputs. Ignoring missing/extra peaks causes abnormal beat dura-
tions that would lead to inaccurate results. Missing/extra peaks in the
ECG signal were identified by looking at the successive beat dura-
tions provided by the pan tompkin’s algorithm. Any ECG peak that
changed the beat duration more than 20% was labelled an outlier.
After removing these ECG peaks, missing/extra peaks in the PPG
signal were identified by correlating each ECG peak with a peak in
the PPG signal. A PPG peak was correlated with an ECG peak if it is
within time proximity of the ECG peak. When a PPG peak cannot be
identified or too many peaks are identified within the time proxim-
ity of an ECG peak, these were identified as outliers. The abnormal
beat durations that these missing/extra PPG beats would cause are
ignored as outliers during metrics calculations.

A number of metrics are computed using the beat-to-beat values
from our proposed algorithm and from the Pan Tompkin’s algorithm.
These metrics are: (i) Coverage (Eq. (1a)); (ii) Sensitivity or Se
(Eq. (1b)); (iii) Positive Predictivity or P+ (Eq. (1c)); and (iv) Root
Mean Square of Successive Differences or RMSSD (Eq. (1d)). Fig.
4 presents a visual representation of some of the values used for the
metrics calculations.

Coverage =
#Identified PPG Peaks
#Identified ECG Peaks

(1a)

Se =
TP

(TP+FN)
(1b)

P+ =
TP

(TP+FP)
(1c)

RMSSD =

r
1
N

X
N
i=1(|IBIi�1 � IBIi|2), (1d)

where TP (true positive) is the number of heart beats correctly iden-
tified by the PPG B2B algorithm, FP (false positive) is the number
of PPG heart beats that did not correspond to an actual heart beat in
the ECG, and FN (false negative) is the number of heart beats that
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Fig. 4: ECG and PPG signals with IBIs shown and the respective
peaks and onsets from the B2B algorithm on the raw PPG signals.

the PPG B2B algorithm missed. The Interbeat Interval (IBI) is the
time between successive ECG peaks, PPG peaks, or PPG onsets.

In order to evaluate our algorithm, PPG and ECG signals are
collected simultaneously for each subject. Data was collected on
a large number of subjects of different ages, skin tones, and body
types. This was to ensure that our evaluation results would be rele-
vant across all populations. Data is collected on 27 subjects (male
and female with different skin tones) each for 2 minutes and 30 sec-
onds. Subjects were asked to stand for the first half and sit for the
second half of the time. Table 1 presents the average results of each
of the metrics for the beat to beat algorithm. As shown in the table,
the coverage, sensitivity, and positive predictivity are all above 83%
with the average RMSSD difference below 20 msec for the wrist data
as compared to the results from the ECG signals.

Metric Result
Coverage 83%
Sensitivity 87%

Positive Predictivity 98%
Average PPG vs ECG RMSSD Difference 12msec

Table 1: Beat-to-Beat metrics results.

4. DISCUSSION AND CONCLUSION

A robust peak and onset detection algorithm for PRV analysis from
wrist PPG signals was proposed in this work. The algorithm used
multiple stages of pre-processing and suggested a hybrid delineation

algorithm to detect the fiducial points of wrist PPG signals. The ADI
multi-sensory watch was used as our evaluation platform to test the
proposed algorithm. The results showed strong correlations and con-
cordance with respect to the ECG HRV. Future work will focus on
applying motion rejection algorithms and on dealing with the miss-
ing beats issue in the PRV analysis.
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[9] A. de Sá Ferreira, J. Barbosa Filho, I. Cordovil, and M. N.
de Souza, “Three-section transmission-line arterial model for
noninvasive assessment of vascular remodeling in primary hy-
pertension,” Biomedical Signal Processing and Control, vol. 4,
no. 1, pp. 2–6, 2009.

[10] J. Allen, “Photoplethysmography and its application in clini-
cal physiological measurement,” Physiological measurement,
vol. 28, no. 3, p. R1, 2007.

[11] B. S. Kim and S. K. Yoo, “Motion artifact reduction in pho-
toplethysmography using independent component analysis,”
IEEE transactions on biomedical engineering, vol. 53, no. 3,
pp. 566–568, 2006.

[12] M. Soundararajan, S. Arunagiri, and S. Alagala, “An adaptive
delineator for photoplethysmography waveforms,” Biomedical

Engineering/Biomedizinische Technik, vol. 61, no. 6, pp. 645–
655, 2016.

2139



[13] B. Nenova and I. Iliev, “An automated algorithm for fast pulse
wave detection,” International Journal Bioantomation, vol. 14,
no. 3, pp. 203–216, 2010.

[14] N. Selvaraj, A. Jaryal, J. Santhosh, K. K. Deepak, and
S. Anand, “Assessment of heart rate variability derived from
finger-tip photoplethysmography as compared to electrocar-
diography,” Journal of medical engineering & technology,
vol. 32, no. 6, pp. 479–484, 2008.

[15] K. Charlot, J. Cornolo, J. V. Brugniaux, J.-P. Richalet, and
A. Pichon, “Interchangeability between heart rate and pho-
toplethysmography variabilities during sympathetic stimula-
tions,” Physiological measurement, vol. 30, no. 12, p. 1357,
2009.

[16] B. N. Li, M. C. Dong, and M. I. Vai, “On an automatic delin-
eator for arterial blood pressure waveforms,” Biomedical Sig-

nal Processing and Control, vol. 5, no. 1, pp. 76–81, 2010.

[17] G. G. Berntson, D. L. Lozano, and Y.-J. Chen, “Filter proper-
ties of root mean square successive difference (RMSSD) for
heart rate,” Psychophysiology, vol. 42, no. 2, pp. 246–252,
2005.

[18] M. Sandberg, Q. Zhang, J. Styf, B. Gerdle, and L.-G. Lind-
berg, “Non-invasive monitoring of muscle blood perfusion by
photoplethysmography: evaluation of a new application,” Acta

Physiologica, vol. 183, no. 4, pp. 335–343, 2005.

[19] P. McLeod and G. Wyvill, “A smarter way to find pitch.” in
ICMC, 2005.

[20] J. Pan and W. J. Tompkins, “A real-time QRS detection algo-
rithm,” IEEE transactions on biomedical engineering, no. 3,
pp. 230–236, 1985.

2140


