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ABSTRACT 
 
The paper proposes an efficient signal processing system 
mainly consisting of an adaptation-based nonlinear echo 
cancellation (NLEC) layer and a joint perceptual subband 
residual echo suppression (SBRES) layer and noise 
reduction (SBNR) layer. The theoretical analyses, subjective 
and objective test results show that the proposed signal 
processing system can offer a significant improvement for 
automatic speech recognition and full-duplex voice 
communication performance in emerging artificial 
intelligence speakers. The proposed SBRES and NLEC 
layers can reduce various types of echoes including linear, 
nonlinear, and time-variant echo. Correspondingly, the 
proposed SBNR layer can effectively reduce not only noises 
but also echoes that have the similar statistical 
characteristics to noises.  Non-uniform auditory perceptual 
critical bands are employed so as to better reflect cochlea 
mechanisms. The SBRES and SBNR layers are jointly 
accomplished in frequency domain, which results in a 
significant reduction of MIPS consumption from real time 
implementation point of view. 
 

Index Terms — Nonlinear echo cancellation system, 
noise reduction, adaptive filters, automatic speech 
recognition, full-duplex voice communication 
 

1. INTRODUCTION 
 
For the purpose of improving automatic speech recognition 
(ASR) performance and full-duplex voice communication 
(FDVC) performance, acoustical echo cancellation (AEC) 
and noise reduction systems are playing a more important 
role in many emerging hands-free applications where noises 
and echoes are becoming more and more complex. A 
current AEC scheme usually employs an adaptive linear 
filter in either time domain, or frequency domain, or 
subband domain to model or approximate the real acoustic 
echo path between loudspeaker and microphone, and 
subtracts the estimated echo from the microphone signal. 

However, there is actually always a residual echo after 
the above linear adaptive subtraction. This is due to the 
following reasons: (1). adaptive linear filter can neither be 
perfectly accurate nor exactly model the transfer function of 
the echo path, (2). the length of adaptive linear filter is not 

often sufficient.  (3). there might be non-linearity in the echo 
path which is impossible for adaptive linear filter to model. 
Therefore, a nonlinear processor technique is necessary to 
further reduce the residual echo. On the other hand, the 
traditional nonlinear processors (such as, center clipper, 
noise-gate, spectral subtraction approaches, or other spectral 
enhancement techniques) will distort the near-end voice [1 - 
7]. More importantly, an unnatural sounding residual echo 
can be produced if these existing nonlinear processor 
schemes are directly employed. This is mainly because of 
the following factors: (1). the user movement results in the 
echo path change, (2). the loudspeaker volume changes 
result in the time-varying echo, especially when the echo 
path changes faster than the convergence rate of adaptive 
linear filter, (3). adaptive linear filter could incorrectly 
“adjust” itself, which results in a reduction of near-end voice 
during the period when the near-end user is talking. 

In practical applications, what makes the processing 
more challenging is the mixed situation where various 
echoes and noises simultaneously present. 

Obviously, techniques that can efficiently suppress 
these various types of complex echoes and noise are highly 
desirable. To achieve this goal, this paper proposes a 
multilayer processing system, which mainly includes a joint 
perceptual SBRES layer and SBNR layer as well as an 
adaptation-based NLEC layer. The given theoretical 
analyses, subjective and objective test results show that the 
proposed system can offer a significant improvement for 
ASR and FDVC performance in emerging artificial 
intelligence speakers. 

The rest of this paper is organized into the following 
four sections. Section 2 mainly presents the proposed 
algorithms of joint SBRES layer and SBNR layer. Section 3 
presents the proposed adaptation-based NLEC layer. By 
using various test results, Section 4 mainly shows that the 
artificial intelligence speakers implemented with the 
proposed system can have significant improvements in 
terms of ASR and echo-return-loss-enhancement (ERLE) 
performance with good voice quality in real-time FDVC. 
Section 5 will make some conclusions and further 
discussions. 
 

2. THE PROPOSED JOINT SBRES AND SBNR 
ALGORITHMS 
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The processing architecture of the proposed multilayer 
system is shown in Figure 1 with single-channel being 
example but without losing generality. In other words, this 
system is easily extended to the multiple-channel cases. In 
playback/receive path (i.e., Rx), the AVC standing for 
automatic volume control and limiter algorithms are 
proposed and implemented in [8], the EQ is an equalizer to 
compensate for loudspeaker frequency response. 

In transmit path (i.e., Tx) of Figure 1, the block 
“Microphone” could be a single microphone or a 
microphone array for FDVC and ASR applications, 
respectively. The “Adaptive Linear AEC” is an existing 
echo preprocessor by using adaptive linear filter (ALF). The 
proposed processing of joint SBRES and SBNR layers is 
shown in Figure 2. The details of the proposed adaptation-
based NLEC layer will be described in Section 3. AGC is an 
existing automatic gain control for voice communication. 

To obtain “AEC reference”, a sampling-rate-converter 
(SRC) is used. The “Rx HPF” and “Tx HPF” are of the 
same characteristics to remove frequencies lower than 80 
Hz. 

 
Figure 1 The Proposed Multilayer Processing System 

 

 
 

Figure 2 The Proposed Scheme for Joint SBRES and SBNR 

In Figure 2, the blocks included in the red box belong to 
SBNR layer, the blocks included in blue big box belong to 
SBRES layer. The “Overlap” could be 50% between 
consecutive frames which is described as follows. 
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where m is the current frame, n is the sample index, L is the 
number of audio samples in a frame, e.g., L = 128 samples 
for the configuration of 8 ms frame length and 16 kHz 
sampling rate. The x(m, n) for L ≤ n < 2L are the current 
audio samples of “AEC Out”. 

In Figure 2, the “Windowing” can be implemented by 
Hamming or Hanning function shown in Eq. (2), or the 
raised cosine function. Hanning function is as follows. 

 
where N is the window length in number of audio samples. 
The N = 2L for 50% overlap. The FFT is implemented by  

 

The “Power Spectra Density” (PSD) is |X(k)|2 for 0 ≤ k 
≤ L, where k=0 denotes for DC component, k = L denotes 
for Nyquist component. 

The two “smoother” blocks have the same processing 
and are implemented by a finite-impulse-response (FIR) 
low-pass filter. They are designed to smooth raw PSD and 
the obtained spectral bin gain over frequency. 

The block “Frequency Bins/Subbands” converts from 
(L+1) bins to either 30 or 15 non-uniform bands on the basis 
of the auditory critical bands. 

Instead of relying on voice activity detection or speech 
presence probability, the proposed “Noise Estimation” 
algorithm stores the band PSD of the selected frame into a 
noise history window and estimates noise PSD from this 
PSD window by searching the minimum band PSD for each 
frequency band over a moving time window. 

Without employing traditional parametric spectral 
subtraction, the proposed “Spectral Gain Calculation” has 
improved the Ephraim and Malah suppression rule in a 
global optimal way for both echo and noise in each 
frequency band. This processing could also output the 
optional voice activity detection information if needed by 
other processing parts. 

The “DTD and SBRES Control” is the proposed 
double-talk-detector (DTD). Two DTD schemes are 
proposed. Both schemes can be performed in either subband 
or full-band domains. As an example, DTD1 and DTD2 are 
performed in subband and full-band domain, respectively. 
The DTD1 is based on the cross-correlation between the 
“AEC In” signal y(n) and “Estimated Echo” signal z(n). The 
cross-correlation coefficients of each frequency band j in the 
m-th frame is defined as follows. 

𝐶12(𝑚, 𝑗) =
𝑃125 (𝑚, 𝑗)
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where 𝑃12(𝑚, 𝑗), 𝑃1(𝑚, 𝑗) and 𝑃2(𝑚, 𝑗) are cross-power and 
power estimations, respectively, and are defined as follows. 
𝑃12(𝑚, 𝑗) = (1 − 𝛼)𝑃12(𝑚 − 1, 𝑗) + 	
  𝛼𝑦(𝑚, 𝑗)𝑧(𝑚, 𝑗)	
  	
  	
  	
  (5) 
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𝑃1(𝑚, 𝑗) = (1 − 𝛼)𝑃1(𝑚 − 1, 𝑗) + 	
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where a is a constant between 0 and 1. If the cross-
correlation coefficient Cyz(m, j) is less than a first threshold, 
then DTD1(m, j) = true, otherwise, DTD1(m, j) = false. 

The proposed DTD2 is based on ERLE measure of 
“Adaptive Linear AEC”. The ERLE is calculated as follows. 

 

where E{} is the expectation operator. What y(n) and x(n) 
denote are audio samples of “AEC In” and “AEC Out”, 
respectively. If ERLE is less than a second threshold, the 
DTD2 = true, otherwise, DTD2 = false. 

Combining DTD1 and DTD2, a final DTD is 
determined. When the final DTD is determined as true, 
SBRES is dynamically disabled. Otherwise, SBRES is 
automatically enabled. 

A “smoother” technique is applied to the spectral bin 
gain after combining the obtained spectral band gains of 
noise with that of echo and converting the final spectral 
band gain into spectral bin gain. Furthermore, the output 
complex spectrum is obtained after performing frequency 
domain filtering by applying the obtained optimal spectral 
bin gain to the input complex spectrum. An IFFT processing 
is performed to map the result from frequency domain to 
time domain. Then, the “Overlap-and-Add” approach is 
used to reconstruct a frame of samples; therefore, the noise 
and residual echo can be greatly suppressed and the 
processed output is also of high voice quality. It can be seen 
from the above that the proposed SBRES can reduce not 
only linear echo but also nonlinear echo. Also, the proposed 
SBNR can reduce not only noise but also stationary echo. 
 

3. THE PROPOSED ADAPTATION-BASED NLEC 
ALGORITHM 

 
The proposed adaptation-based NLEC layer is shown as in 
Figure 3, where the “Delay” should be the algorithm latency 
of the “Joint SBRES and SBNR” block so as to time-align 
the “AEC In” signal and “Joint SBRES and SBNR Out” 
signal. The proposed NLEC algorithm takes “AEC In” 
signal as reference which includes all types of echo 
nonlinearities. 

 
Figure 3 The Proposed Adaptation-Based NLEC Algorithm 

 

The normalized least mean square (NLMS) adaptation 
scheme is used to update the weights h(n) of “Adaptive 
FIR” filter and is implemented as follows. 
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where e(n) is the output of the “Adder”, i.e., error signal. 
What v(n) denotes is the delayed “AEC In” signal, i.e., the 
reference signal with vT(n) denoting its transpose. The step 
size of the adaptation is denoted by µ, whose value is 
between 0 and 1. 

Instead of switching between freezing or unfreezing the 
adaptation in the conventional adaptive filtering algorithm, 
what this paper proposes is to dynamically adjust the filter 
weights after the adaptation. As shown in the “Weight 
Modification” of Figure 3, all the related weights are 
adjusted according to the three situations, i.e., double talk, 
near-end talk only, and far-end talk only. 

  More importantly, the proposed NLEC algorithm 
introduces a globally optimal FIR filter in addition to an 
adaptive FIR filter so as to maximize the performance of 
NLEC as further discussed in next sections. The “Weight 
Copy” contains a set of various measures that attempt to 
ascertain the convergence state of the two FIR filters. 
 

4. EVALUATIONS 
 
In this section, the evaluation results and test analyses of the 
proposed system are presented in terms of noise reduction 
performance, echo suppression performance, ASR 
performance, and FDVC performance. 
 
4.1. Noise reduction performance 
 
Figure 4 shows the input waveform (top) of noisy speech 
captured in vacuum noise environment and the output 
waveform (bottom) processed by the proposed SBNR layer. 
Obviously, the proposed SBNR layer reduces noise about 
19.3 dB. Figure 5 shows the corresponding spectrograms. 
 

 
Figure 4 Waveforms of “before” (top) and “after” (bottom) 

SBNR Processing 
 

 
Figure 5 Spectrograms of Figure 4 
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4.2. Echo suppression performance 
 
Figure 6 shows the waveform of SBRES=off (top) and the 
waveform of SBRES=on (bottom). It can be seen that the 
proposed SBRES layer reduces echo about 11.64 dB. Figure 
7 shows the waveform of NLEC=off (top) and the 
waveform of NLEC=on (bottom), which shows that echo 
has been reduced by the proposed NLEC layer about 35 dB. 

 
Figure 6 Waveforms of “SBRES=off” (top) and 

“SBRES=on” (bottom) 
 

 
Figure 7 Waveforms of “NLEC=off” (top) and “NLEC=on” 

(bottom) 
 
4.3. Full-duplex voice communication performance 
 
Figure 8 shows the waveform of (SBRES, SBNR, NLEC) = 
off (top) and the waveform of (SBRES, SBNR, NLEC) = on 
(bottom).  It can be seen from this result that the proposed 
(SBRES, SBNR, NLEC) reduces echo about 40 dB. 

 
Figure 8 Waveforms of (SBRES, SBNR, NLEC) = off (top) 

and (SBRES, SBNR, NLEC) = on (bottom) 
 
4.4. ASR performance 
 
The ASR test results of the proposed SBRES, SBNR, and 
NLEC layers are obtained by using a third-party ASR 
engine. Figure 9 shows the relative word-error-rate (WER) 
improvement of SBNR layer for male (top plot) and female 
(bottom plot) voice, where averaging over 12 types of noises 
is performed. There are 6,000 utterances for each types of 
noises. Figure 10 shows the WER reductions of SBRES and 
SBNR layers with 19*1486 = 28,234 words. Figure 11 
shows the relative WER improvements of NLEC layer. 
There are 10,000 wake-words for each playback volume. 

 
Figure 9 Relative WER Improvements of SBNR Layer 

 

 
Figure 10 WER (lower is better) of SBRES and SBNR Layers 

 

 
Figure 11 Relative WER Improvements of NLEC Layer 

 
5.  CONCLUSONS  

 
By addressing various types of echoes and noises, the above 
theoretical analyses, subjective and objective test results 
have shown that the proposed signal processing system can 
offer a significant improvement for ASR and FDVC 
performance in emerging artificial intelligence speakers. 

In addition, the MIPS requirement incurred by the 
proposed system is also small from real time 
implementation point of view. All of these mean that the 
proposed system can serve as a very efficient voice 
enhancement tool for many emerging audio/voice related 
applications and devices where echoes and noises are 
becoming complex and mixed. 
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