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ABSTRACT

The problem of load estimation from sensor signals holds
significance in the field of intelligent manufacturing. The
goal of this work is to estimate the axial and spindle load
values in a Computer Numerical Control machine from in-
put sensor readings like spindle speed, feed rate, tool posi-
tions, etc. This can be viewed as a standard regression prob-
lem. Here, we propose a novel deep learning based regres-
sion technique that incorporates regression within the stacked
autoencoder framework. Unlike the popular heuristic pre-
training, fine-tuning approach, we solve all the parameters
of the problem jointly. A variable splitting Augmented La-
grangian approach is employed to solve the ensuing optimiza-
tion problem. Comparisons on standard regression models
like linear, Least Absolute Shrinkage and Selection Opera-
tor (LASSO), Support Vector Regression and the traditional
stacked autoencoder have shown that our technique consider-
ably outperforms them.

Index Terms— Asymmetric stacking, deep learning, re-
gression, estimation, intelligent manufacturing

1. INTRODUCTION

The intelligent manufacturing domain has been automated to
a great extent with the introduction of the Computer Numer-
ical Control (CNC) machines [1]. The entire machining pro-
cess involves complex interaction of several operating signals
obtained from different sensors [2]. Since the tool surfaces
undergo continuous wearing with the progress of the opera-
tion and often result in tool breakage, tools are replaced man-
ually in a timely manner based on simple rules like the num-
ber of workpieces completed and the like [3]. However, in
order to make the tool replacement strategy cost-effective as
well as to prevent damage due to tool breakage, this process
needs to be automated.

The load or power incurred across the axes and the spin-
dle during the actual cutting process, are effective in detecting
breakage of the cutting tool [4]. Thus the focus of our paper
is to mathematically model and estimate the axial load and
the spindle load using sensor signals associated with the ma-
chine, including feed rate, surface speed, spindle speed, etc.,
for better productivity and process control [5, 6].

Although ideally a physics based model can be built for
the above problem, it is not always possible to develop them
due to the complicated dynamics of manufacturing systems.
In this work we will go for a completely data driven approach
and formulate it as a regression problem. We propose a deep
learning architecture based on the stacked autoencoder frame-
work to solve this regression problem as it can learn arbitrary
relationships without specification from the user. For such
supervised deep learning problems, the standard approach is
to follow the pre-training and fine-tuning paradigm [7]. In
the pre-training stage, each layer of the stacked autoencoder
is learnt greedily. In the fine-tuning stage, the targets are at-
tached at the deepest layer of the encoder and the decoder is
detached. The supervised architecture is fine tuned. How-
ever, in such a greedy paradigm, there is no relationship be-
tween the parameters learnt during the pre-training and the
fine-tuning stages.

In this work, we propose to incorporate regression into
the stacked autoencoder framework. But instead of learning
it greedily, we jointly solve for all the weights in a mathemat-
ically more optimal fashion, without using backpropagation.
This will be a novel formulation, which will be solved using
variable splitting Augmented Lagrangian techniques [8, 9].
The remainder of the paper is structured in the following man-
ner. Section 2 gives a brief review of the prior literature. The
proposed regression model is explained in detail in Section
3. This is followed by experimental evaluation and results in
Section 4. Finally Section 5 concludes our work.

2. LITERATURE REVIEW

2.1. Regression for machine automation

There exist several prior-arts for regression models, amongst
which some of the popular ones are the linear regression,
Generalised Linear Models (GLM) [10], quasi-likelihood es-
timation [11], Least Absolute Shrinkage and Selection Oper-
ator (LASSO) [12], non-parametric Nadaraya-Watson kernel
estimator [13,14] and Support Vector Regression (SVR) [15].
However, since only few of these regression models have been
used for the problems of load estimation and machine au-
tomation and also due to the limitation of space, we shall re-
frain from discussing all of these models here.
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Linear regression models have been explored in the in-
telligent manufacturing domain for various problems like
spindle load estimation [16], error compensation [17] and
the like. Given the load yi and the signal predictors xi =
{xi1, ...xip}ni=1, the model is given by yi = xTi β + εi. Here
β is the parameter vector and ε is the error term or noise.

Non-linear regression techniques, especially SVR with
polynomial kernels and gaussian kernels, have been used
widely in machine automation use-cases. SVRs with these
kernels have been applied for tool condition assessment in
CNC machine [18], assessment of machine degradation [19],
etc.

Besides, feature extraction and training Artificial Neural
Networks (ANN) for regression have been performed for load
estimation [16] , tool wear prediction [20] and the like.

2.2. Autoencoders

Fig. 1. Structure of an Autoencoder

Autoencoders, as shown in Fig. 1, are self-supervised neural
networks, i.e. the inputs and the outputs are the same. The
input data (X formed by stacking the training samples as
columns of a matrix) is projected onto the hidden representa-
tion: H = ϕ(WEX) by an encoder WE ; there is a non-linear
activation function ϕ associated with it. The decoder WD

reverse maps the representation onto the output (=input) as
X = WDH . During training, the encoder and the decoder
are learnt by minimizing the Euclidean cost function.

argmin
WE ,WD

‖X −WDϕ(WEX)‖2F (1)

Stacked autoencoders are created by nesting autoencoders
one inside the other. Mathematically this is expressed as

argmin
WE1

,WE2
...WEL

,WD1
,WD2

...WDL

‖X − g (f(X))‖2F (2)

where g (f (X)) = WD1
ϕ (WD2

...ϕ (WDL
(f (X)))) and

f (X) = ϕ
(
WEL

ϕ
(
WEL−1

...ϕ (WE1X)
))

.
It is difficult to learn all the parameters in one go by back-

propagation owing to the vanishing gradient problem. There-
fore, the stacked autoencoder is solved greedily one layer at a
time [7] starting from the outermost layer.

However, greedy learning is a sub-optimal approach since
the outer layers influence the inner layers but not vice versa.
In optimal learning, all the layers should be affecting one an-
other (unlike the case when backpropagation is used).

3. OUR APPROACH

We propose a regression model based on stacked
autoencoders with an asymmetric structure, consisting of
multiple encoding layers and a single decoding layer. Pre-
vious studies on stacked autoencoders had equal number of
encoders and decoders owing to the greedy training paradigm.
Since we propose to learn all the layers jointly, we have the
flexibility to change the architecture. We do not see any
reason to have an equal number of encoders and decoders,
especially since the decoders do not play any direct role in
the analysis. More decoders mean more parameters to learn,
which leads to over-fitting with limited training data. In a
recent study [21], it was shown that having multiple encoders
but only one decoder keeps the robust abstraction capacity of
deep learning without the pitfalls of over-fitting. This moti-
vates us to build upon the asymmetric architecture. We have
shown the architecture for the two layer model, but one can
easily extrapolate it to more layers.

Fig. 2. Architecture of the proposed Asymmetric Stacked Au-
toencoder for Regression

The regression framework, as shown in Fig. 2, consists of
an asymmetric stacked autoencoder having two encoding lay-
ers and a single decoder. Non-linearity is added at each layer
using a non-linear activation function. The autoencoder yields
representations of the raw input X at its encoding layers (Z1

and Z2 in Fig. 2) associated with weight matrices WE1
and

WE2
respectively. The single decoding layer, associated with

the weight matrix WD, strives to yield the raw data from the
representation at the deepest encoding layer. In addition to
the encoding-decoding paradigm, the estimated or regressed
target value y is obtained from the representation at deepest
layer (Z2 in Fig. 2) of the stacked autoencoder, associated
with weight vector w.

Unlike the traditional pre-training and fine tuning ap-
proach, the proposed method jointly learns regression weights
along with the encoding-decoding weights. This ensures a
more optimal solution owing to the fact that in the former, the
shallower layers influence the deeper layers but the opposite
influence does not take place, which results in sub-optimality.
When they are jointly learnt, all the layers influence one an-
other as should be the case. Moreover, since backpropagation
can only be used for training unidirectional structures, i.e.
one input and one output, it cannot be applied to the proposed

2127



structure that has two outputs. Thus the regression problem
is addressed by solving the ensuing optimization problem.
Here, a variable splitting Augmented Lagrangian paradigm is
followed to solve the same [8, 9].

3.1. Joint-learning for regression

In contrast to the traditional two phase training model, the
ensuing joint optimization problem for regression that needs
to be solved in the training phase can be formulated as below:

argmin
WE1

,WE2
,WD,w

( ∥∥(X −WDϕ
(
WE2

ϕ
(
WE1

X
)))∥∥2

F

+ λ
∥∥y − wTϕ

(
WE2

ϕ
(
WE1

X
))∥∥2

F

) (3)

The symbols used here are described previously. Here λ con-
trols the weight of regression and ϕ is the non-linear activa-
tion function. This is a non-convex joint optimization prob-
lem.

We introduce two proxy variables viz.
Z2 = ϕ (WE2

ϕ (WE1
X)) and Z1 = ϕ (WE1

X) [9]. The
corresponding Augmented Lagrangian formulation is:

argmin
WE1

,WE2
,WD,w,Z1,Z2

(
‖X −WDZ2‖2F + λ

∥∥y − wTZ2

∥∥2
F

+ µ2 ‖Z2 − ϕ(WE2
Z1)‖2F

+ µ1 ‖Z1 − ϕ(WE1X)‖2F
)
;

(4)
where Z1 and Z2 are the representations of the input X at the
encoding layers. The parameter λ and the hyper-parameters
µ1 and µ2 need to be tuned as per the application. Breaking
equation (4) into smaller pieces using Alternating Direction
Method of Multipliers (ADMM) [22], we end up with 6 sub-
problems as given below:

P1: WD ← argmin
WD

‖X −WDZ2‖2F

P2: w ← argmin
w

∥∥y − wTZ2

∥∥2
F

P3: WE1
← argmin

WE1

‖Z1 − ϕ (WE1
X)‖2F

⇒WE1 ← argmin
WE1

∥∥ϕ−1Z1 −WE1X
∥∥2
F

P4: WE2
← argmin

WE2

‖Z2 − ϕ (WE2
Z1)‖2F

⇒WE2 ← argmin
WE2

∥∥ϕ−1Z2 −WE2Z1

∥∥2
F

P5:
Z2 ← argmin

Z2

(
‖X −WDZ2‖2F + λ

∥∥y − wTZ2

∥∥2
F

+ µ2 ‖Z2 − ϕ (WE2Z1)‖2F
)

⇒ argmin
Z2

∥∥∥∥∥∥
 X√

λy√
µ2ϕ (WE2

Z1)

−
 WD√

λwT

√
µ2I

Z2

∥∥∥∥∥∥
2

F

P6:
Z1 ← argmin

Z1

(
µ2

∥∥Z2 − ϕ
(
WE2Z1

)∥∥2
F

+ µ1

∥∥Z1 − ϕ(WE1
X
)∥∥2

F

)
⇒ argmin

Z1

∥∥∥∥( √
µ2ϕ

−1 (Z2)√
µ1ϕ (WE1X)

)
−
( √

µ2WE2√
µ1I

)
Z1

∥∥∥∥2
F

P1, P2 and P5 are standard linear least square problems hav-
ing closed form solutions. They can also be solved using con-
jugate gradient. P3, P4 and P6 can be easily converted to
their equivament forms since the activation functions are uni-
tary and easily invertible. Hence, P3, P4 and P6 turn out to
be linear least square problems. This concludes the training
process.

Finally, during testing, the unknown output ỹ for test data
Xtest can be estimated using the learned weights by solving

ỹ = wTϕ
(
WE2ϕ

(
WE1Xtest

))
(5)

4. EXPERIMENTAL EVALUATION

We have performed validation over smart factory real-world
data involving 2 axis Horizontal and 4 axis Vertical CNC
Turning machines. Since we have worked on proprietary data,
we are unable to share the same publicly. The data consist of
different sensor signals associated with the machine. The ax-
ial load and spindle load, incurred while machining specific
components, have been measured in units of mega-watt (Mw)
and recorded as ground truth. Data samples were collected
per second throughout a day over a period of 1 month during
the actual operating condition. The captured signals consist of
absolute tool position across all the axes, amount of distance
to go along the controlled axes, spindle speed value related to
constant surface speed control on CNC, surface speed value,
feed rate and the spindle motor speed. Our goal is to estimate
load values at different axes as well as the spindle load using
these captured signals.

Table 1. Parameter values considered for the proposed re-
gression model

Axes names λ µ1 µ2

Axis 1 1.6 1.3 1.3
Axis 2 0.5 1.7 1.7
Axis 3 0.6 1.6 1.6
Axis 4 1.1 1.5 1.5
Spindle 0.7 1.6 1.6

We have added non-linearity at each layer of the model
using the hyperbolic tangent function. The number of nodes
at hidden layers were adjusted experimentally. The proposed
regression model was implemented in Matlab. The parameter
values considered for our model, after performing grid search,
are listed in Table 1. Table 2 presents the results obtained
across 3 exemplary days using the proposed model. Though
similar results were obtained for all the other days, they could
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Table 2. Comparison of performance metrics using Linear, LASSO, SVR, traditional SAE and proposed regression model
Day Axis Perf. metrics Linear Regression LASSO Regression SVR (Polynomial) SVR (Gaussian) Traditional SAE Proposed model

4 Apr Axis 3 NMSE 0.1208 0.1231 0.1307 0.1308 0.1204 0.1162
RMSE 5.0349 5.1313 7.0871 7.0864 5.0163 4.8417

4 Apr Axis 4 NMSE 0.8018 0.8026 0.9593 0.9717 0.9800 0.6579
RMSE 4.9956 5.0007 6.1880 6.1863 6.1061 4.0995

4 Apr Spindle NMSE 0.9406 0.9421 0.9955 0.9965 0.9745 0.8891
RMSE 6.6704 6.6810 7.0711 7.0722 6.9114 6.3053

7 Apr Axis 1 NMSE 0.6343 0.6353 0.6841 0.6852 0.7132 0.5842
RMSE 5.1879 5.1959 6.1761 6.1635 5.8331 4.4397

7 Apr Axis 3 NMSE 0.1039 0.1042 0.1132 0.1147 0.1002 0.0980
RMSE 4.3305 4.3438 6.3841 6.3579 4.1767 4.0834

7 Apr Spindle NMSE 0.8675 0.8806 0.9978 0.9990 0.9809 0.8141
RMSE 7.1641 7.2726 8.2515 8.2523 8.1010 6.7231

12 Apr Axis 2 NMSE 0.6434 0.6477 0.7850 0.7857 0.5945 0.5587
RMSE 7.7262 7.7779 9.7801 9.7791 7.1389 6.7093

12 Apr Axis 3 NMSE 0.1082 0.1082 0.1168 0.1185 0.1026 0.1001
RMSE 4.4554 4.4554 6.0906 6.0639 4.2260 4.1199

12 Apr Axis 4 NMSE 0.7401 0.7591 0.9601 0.9806 0.9862 0.5372
RMSE 4.8051 4.9286 6.4675 6.4629 6.4030 3.4877

not be presented here due to space constraints. We compare
our results with that obtained via linear regression, LASSO,
SVR using both the polynomial and gaussian kernels and the
traditional stacked autoencoders ( SAE) with two phase learn-
ing using backpropagation. We have reported the best results
obtained using different parametric settings for the regression
techniques mentioned in Table 2.

Normalised Mean Square Error (NMSE) and the Root
Mean Square Error (RMSE) are used as performance met-
rics as they are widely used for making comparisons in
the manufacturing domain regression techniques [20, 23].

They are given by: NMSE =
‖y − ỹ‖2
‖y‖2

and RMSE =√√√√√ N∑
i=1

(yi − ỹi)2

N
where y is the vector of actual load values

measured from the axes, ỹ is the estimated load vector using
regression analysis and N = length(y).

It is quite obvious from the Table 2 that when the pro-
posed regression model is applied, there is a consistent im-
provement in performance in terms of both the metrics over
the traditional regression techniques. Since as per the results,
the closest competitor was observed to be the linear regres-
sion in maximum of the cases and also for maintaining visual
clarity, we have only compared against it in Fig. 3. Both (a)
and (b) of Fig. 3 display portions of the load signals, pertain-
ing to a different day, regressed using the proposed method
as well as using linear regression along with the correspond-
ing metric values. It can be seen clearly that the signal peaks
could be better estimated using the proposed method.

5. CONCLUSION

In this work, we proposed a stacked autoencoder based novel
regression framework. The focus of this paper is the problem
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Fig. 3. Part of axial load values regressed using both linear
regression and the proposed method

of load estimation in a real time smart machine using captured
sensor signals. We compared our regression framework with
the existing popular methods like linear regression, LASSO,
SVR as well as traditional stacked autoencoder and observed
that our method outperforms them.

Although the proposed model is applied in the manufac-
turing domain, the same can be applied to any kind of re-
gression problems, which makes the solution generic. For in-
stance, the model can be applied on problems like prediction
of household electricity consumption, blood pressure estima-
tion using PPG and ECG signals and the like.
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