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ABSTRACT 

 

Individual ship detection from underwater audio is the task of 

deciding whether a specific ship is present, using sound captured 

by an underwater hydrophone. It is a task analogous to speaker 

identification (SID), in the sense that it is an open-class detection 

task; the ships present could be other irrelevant (“impostor”) ships, 

never encountered in the training data. We present two 

methodologies for tackling this problem, both motivated by our 

work in speech-related technologies: (i) one based on neural 

networks, which follows, to a large extent, the approach of [1], and 

(ii) one based on i-vectors and PLDA [2]. To the best of our 

knowledge, this is the first time that the topic of individual ship 

detection is approached as an open-class detection problem. 1 

 

Index Terms — Sonar, ship detection, neural networks, 

speaker identification. 

 

1. INTRODUCTION 

 

Automatically identifying ships in the ocean is an important 

undertaking, for both commercial and military applications. The 

sounds emitted by ships can be captured by underwater 

hydrophones and then used for such a task. The assumption is that 

these sounds, which are emitted by moving parts, such as engines 

and propellers, are correlated with the class label of interest.  A 

number of papers (e.g., [1] [3]) have shown that it is possible to 

perform ship-type classification successfully using underwater 

sound captured with just a single hydrophone. 

Ship-type classification assumes that we have a closed set of 

target labels. The task is to output one (and only one) of these 

labels which minimizes the error. In this paper, we focus on a 
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different (albeit, related) task, that of individual ship detection, 

where the goal is to detect whether a specific ship of interest (from 

a predefined set of ships) is present in a piece of audio or not. 

Detection is of particular interest in many applications; its main 

advantage is that we don’t have to assume that we have a closed set 

of ships. Specifically, if the audio is from another ship (an 

“impostor”), that ship could be anything, including one that was 

never seen in the training data. A successful detection system has 

to be able to reject the bulk of these instances without significantly 

affecting the detection of true occurrences of ships of interest. In 

this sense, individual ship detection is analogous to speaker 

detection (also known as speaker identification (SID) [2]), where 

the goal is to detect whether a speech sample is from a specific 

speaker or not. Note that the task tackled here is distinct from the 

(much easier) binary detection task of ship vs. no-ship, whose goal 

is to determine whether there is a ship (that is, any ship) present or 

not [1]. Having explained this distinction, and, to simplify our 

exposition, we will refer to individual ship detection as ship 

detection in the rest of the paper. 

In this paper, we present details about our ship detection 

system, using data collected by the Scripps Institution of 

Oceanography, UCSD, with a single hydrophone setup. The 

feature extraction follows the pipeline in [1]. Modeling is done 

either (i) with a neural network, or (ii) an approach that uses i-

vectors [4] and PLDA [5]. The scores generated from these 

approaches are then processed further, through a normalization 

process, which makes the scores more comparable across different 

ships and is shown to improve global performance.   

The paper is organized as follows: Section 2 gives details about 

the corpus used in our experiments. Section 3 describes the various 

components of the detection system. Section 4 gives details about 

the score normalization algorithm. Section 5 presents experimental 

results from ship detection, and Section 6 presents concluding 

remarks. 

2. CORPUS 

 

All our experiments were conducted with the sonar data collected 

with a single omnidirectional hydrophone by the Scripps 

Institution of Oceanography, UCSD, San Diego, CA over a period 

of 9 years (part of this corpus was used in [6]). The hydrophone 

was located off the coast of Santa Barbara, at a depth of about 600 

m. The data was originally sampled at 200 kHz and subsequently 

downsampled to 10 kHz before being delivered to us. Scripps also 

provided us with data from the Automatic Identification System 

(AIS) which contains information broadcast regularly by most 

commercial ships, such as time stamp, GPS coordinates, unique 

ship identification, speed, etc. This data set is described in more 

detail in [1]. The data selection and the final corpus preparation is, 
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however, done differently here.  In the corpus of [1], for ship-type 

classification, we constrained the training and test ships for each 

ship type to be distinct in order to demonstrate the ability to do 

ship-type classification on unseen ships.  In contrast, here, in order 

to detect individual ships, we had to ensure that the ships that we 

were trying to detect were in both the training and test data.   

Similar to [1], we imposed a constraint that passages of 

different ships should not overlap in time (detecting ships in the 

presence of other ships is beyond the scope of this paper). For this 

reason, we kept portions of passages that were within 𝑑1= 6 km 

from the hydrophone, only when no other ships were within a 

distance 𝑑2 = 10 km at the same time. Thus, we implicitly assumed 

the acoustics of ships beyond the 10 km limit would be quiet 

enough so as not to affect our results – an assumption that might 

not always be true. We also imposed the constraint that there are at 

least 2 passages per ship.   

We have labels for all of the ships, defined by the AIS data, but 

in order to come up with a realistic scenario, we divide the ships 

into three categories: 
 

a) Labeled ships: these are ships that exist in the training data 

and for which we have the exact ship id.  These are used as 

“target” ships that we would try to detect. 

b) Unlabeled ships: these are ships that also exist in the training 

data, but for which (we pretend) we do not have a detailed 

label. These are all categorized with a single “other” class 

label. 

c) Unseen ships: these are ships that do not exist in the training 

data.  
 

We perform detection experiments using each of the target ships in 

category (a), by trying to correctly detect true instances of that ship 

(target trials).  We also test each target with “impostor” trials using 

audio from ships in all three categories.  So the impostor could be 

another ship for which we have an explicit model (a), or another 

ship that was in the “other” category (b), or a unseen ship (c).  We 

compute the Miss and False Alarm rate for each target ship and 

then average each of the two error rates across all ships. 

The ships were divided into the three categories based on the 

number of passages.  The top 100 ships with the most passages 

were placed in category (a), the next 100 were placed in category 

(b) and the rest in category (c). 

The data was split into train/test such that, for any given ship, 

all of the training data predates all of the test data, and the training 

data contains at least half of the passages from each ship. 

Furthermore, in order to leave as much data available for training 

as possible, we imposed an upper bound of 5 on the number of 

passages per ship in the test data. 

A development (dev) set was carved out from the training set, 

making sure that all ships are represented in both sets and that the 

distribution of dev ship passages follows that of the test set. The 

purpose of the dev set is two-fold: (i) to tune parameters, such as 

the size of the neural network, and (ii) to estimate normalization 

maps (more details about such maps appear in a later section). To 

ensure that we would have a representative dev set without 

compromising much on the size of the training set, the dev set 

contained about six times fewer passages than the training set. 

We provide several statistics for this corpus in Table 1.  The 

bulk of the passages in the test data are from the unseen ships to 

mimic the realistic scenario of trying to detect only a limited 

number of ships of interest from among a potentially large set of 

ships that appear in the ocean and are not of interest. The training 

set statistics are for the final set (after excluding the dev set 

passages). 
 

 TRAIN DEV TEST 

# unique ships 200 200 611 

# passages 1539 259 1764 

# ships in (a) 100 100 100 

# passages in (a) 1337 159 437 

# ships in (b) 100 100 100 

# passages in (b) 202 100 246 

# ships in (c) - - 411 

# passages in (c) - - 1081 

 

Table 1. Statistics of the ship detection corpus. 

 

3. DETECTION SYSTEM 

 

The detection system consists of various components shown in 

Figure 1. 

 

A. Feature extraction at the frame level 

 

Similar to [1], a feature vector is computed at every frame of 

audio. The sequence of processing steps consists of (i) short-time 

spectral analysis, using a 3 s analysis window, computed every 1 s; 

(ii) disk noise removal, where some artifacts in the audio, caused 

by a disk drive while recording data, are removed; (iii) a non-linear 

filterbank, where the 3000 spectral values between zero and 1 kHz 

are summed into 400 triangular filters – the filters are roughly 

equally spaced up to 65 Hz and log-spaced above 65 Hz; (iv) 

temporal averaging, where the filter energies, computed every 1 s, 

are averaged over an interval of 3 s, with the averaging repeated 

every 1 s; (v) dimensionality reduction, where the 400-dimensional 

feature vector at each frame is reduced to a smaller dimension 

using PCA; and (optionally) (vi) i-vector computation [4], which 

reduces the ensemble of feature vectors of a whole segment of 

interest into a single vector (more details about this appear below). 

 

B. Modeling 

 

We have experimented with two modeling approaches: (i) Using a 

neural network that outputs posteriors over the classes (ships) of 

interest, and (ii) using i-vectors and PLDA. 

 

Modeling with a neural network 

 

We use a neural network (NN) with one hidden layer (more layers 

did not improve performance). The input to the neural network is 

one feature vector corresponding to one frame. The output layer 

has one output for each of the 100 labeled ships in category (a) 

Spectral 
Analysis  

Dimensionality 
Reduction 

Score 

Normalization 

Disk Noise 
Removal 

Non-linear 
Filterbank 

Temporal 
Averaging 

Score for 
target ship 
 

Input 
audio 
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Fig. 1. Block diagram of the detection system pipeline. 
 

Decoding 
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plus one output for the “other” category, resulting in 101 

posteriors.  (Note that these posteriors were used only for 

computing the detection score for each ship, and not for 

classification.)  The training is done with the backpropagation 

algorithm and the cross-entropy optimization criterion. The 

network weights are initialized with RBM pretraining [7]. 

 

Modeling with i-vectors and PLDA 

 

This approach is described in detail in [2], but we give a summary 

here. First, we use PCA to reduce the dimensionality of the feature 

vector from 400 to 60 dimensions.  Then, we estimate a universal 

background Gaussian mixture model (GMM) from the spectral 

features. For any given segment of audio (sequence of frames), we 

compute per-Gaussian posteriors and perform maximum 

aposteriori (MAP) adaptation of the means of the GMM. These 

modified means are then concatenated together into a single vector 

(the so-called “supervector”). The supervector is subsequently 

projected into an “i-vector” space [4], of much reduced 

dimensionality (60). I-vectors contain not only the information 

relevant for ship classification, resulting in the useful between-

class variability, but also all kinds of nuisance information, which 

results in within-class variability. We can refer to this nuisance 

information as segment variability in our case. PLDA [5] defines 

an i-vector generative model that models these variabilities with 

the aim of emphasizing the ship variability and neglecting the 

passage/segment variability.  Given a pair of two sets of i-vectors – 

one set extracted for the ship enrollment data from a target ship 

and the other one extracted from a segment of test data (formed by 

a single i-vector in our case) – PLDA allows us to compute a score 

in the form of a log-likelihood ratio between the hypotheses that a) 

both sets of i-vectors belong to the same ship and b) they belong to 

different ships. 

 

C. Generating detection output at the segment level 

 

We consider segments of duration 5 seconds, 1 minute, and 5 

minutes for detection. That is, we split each passage in the test data 

into these short segments and perform detection on each one 

separately from the others. This “memoryless” style of detection 

was done in order to mimic a scenario where the goal is to detect a 

target as accurately as possible within a prescribed amount of time, 

without using any prior information about it (e.g., as soon as the 

system receives a signal from a novel source). For the case of the 

NN pipeline, conversion of frame-level posteriors into segment 

posteriors is done by computing the arithmetic mean of the 

posteriors over the frames of each segment, as explained in [1]; 

this was found to be more robust than computing the geometric 

mean. For the case of the i-vector and PLDA pipeline, since each i-

vector is generated from the whole segment of interest (5 seconds, 

1 or 5 minutes), segment-based scores are generated directly and 

no conversion from frame scores is needed. 

For each segment, if the target ship has a score above a certain 

threshold, then that target is hypothesized as being present. 

Clearly, a segment can have multiple ships hypothesized as being 

present.  Segment scores (log-posteriors or log-likelihood ratios) 

are optionally converted into normalized segment scores using 

either the “pFA-normalization” approach of [8], [9] or the “linear-

fit” approach of [10]. Score normalization makes the scores of 

different target labels commensurate, so that when we sweep a 

single threshold we obtain a better Receiver Operating 

Characteristic (ROC) curve.  More details about this normalization 

scheme appear in the next section. 

 

D. Evaluation 

 

The False Alarm (FA) and Miss rates for a target class c and a 

detection threshold t are computed as: 

 

𝑝𝐹𝐴(𝑐, 𝑡) =
# segments falsely accepted as 𝑐

# segments that do not contain 𝑐
 

 

 

𝑝𝑀𝑖𝑠𝑠(𝑐, 𝑡) =
# segments of 𝑐 falsely rejected as not 𝑐

# segments that truly contain 𝑐
 

 

For any choice of t, the average FA and Miss rates are defined as 

follows: 

 

𝑝𝐹𝐴(𝑡) =
1

𝐷
∑ 𝑝𝐹𝐴(𝑐, 𝑡)

𝑐

,   𝑝𝑀𝑖𝑠𝑠(𝑡) =
1

𝐷
∑ 𝑝𝑀𝑖𝑠𝑠(𝑐, 𝑡)

𝑐

  

 

where D is the number of detailed labels (100). By sweeping the 

threshold t, we can trade off the pFA(t) against the pMiss(t).  In all 

of our experiments, we report the Equal-Error-Rate (EER), which 

is a single-number measure of the performance and is that point on 

the ROC curve where pFA = pMiss. 

 

4. SCORE NORMALIZATION 
 

Since our performance measure depends on a global ranking of the 

detections, raw posterior scores may not be optimal for ranking, as 

they are not necessarily commensurate across classes. For 

example, detections of a class may have low posterior in general 

(too conservative learner), or detections of another class may have 

high posterior in general (too confident learner). Score 

normalization was introduced in [8], [9] as a way to fix this 

problem: we learn to map raw posteriors to scores that are less 

class-dependent. As was shown in these papers, all score 

normalization methods investigated resulted in significant 

performance improvements in keyword spotting. Here, we mainly 

focus on two of the methods: (i) pFA normalization and (ii) linear-

fit normalization. 

 

A. pFA normalization 

 

The goal of pFA normalization [8], [9] is to map the posterior of 

each ship to the corresponding pFA value that results when setting 

the decision threshold at that posterior. A dev set (described in 

Section 2) is used for estimating these ship-dependent maps.   Note 

that the dev set does not need to contain any true samples of a ship 

to estimate this map; it only needs scores for other ships against the 

model for this target ship.  

 At test time, a posterior is mapped to the linear interpolation of 

the mapped values of the two closest training posteriors. 

 

B. Linear-fit normalization 

 

This type of normalization was described in [10]. It entails 

computing a ship-dependent linear mapping between log-posterior 

and log-rank. To better emphasize the fit at higher posteriors 

(lower ranks), the data used to estimate the mapping is sampled 
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more densely in that region. As with pFA normalization, the linear 

fit is estimated on the dev set and is then applied on the test set. 

 

5. EXPERIMENTS 

 

Ship detection results (EER) are now reported for the dataset that 

was specified in Section 2. All tuning of parameters (e.g., size of 

hidden layer in the NN) was done on the dev set. So, the reported 

results on the test set are fair. 

Table 2 shows results obtained on 1-minute segments of the 

test set. The NN pipeline uses 300 nodes in the hidden layer, while 

the i-vector+PLDA pipeline uses a UBM with 16 Gaussians, and 

60-dimensional i-vectors.  Each column in the table corresponds to 

one of the normalization schemes, with “original” referring to the 

raw posteriors without normalization.  The rows give the results for 

different subset trials, including “all ships”, “labeled” ships only, 

“unlabeled”, and “unseen”. As can be seen, both normalization 

schemes perform better than the original, with pFA normalization 

performing better than linear fit in the case of the NN pipeline, 

while the opposite happens with the other pipeline. Interestingly, 

the NN pipeline performs almost equally well on segments of 

labeled ships and unlabeled ships, while the alternative pipeline 

performs best on the segments of unlabeled ships, possibly because 

it can model the unlabeled ships better as a group. Furthermore, the 

i-vector+PLDA pipeline is better than the NN pipeline on the 

unseen ships, while the opposite happens for the labeled ships.   

 

 Original pFA norm Linear fit 

NN pipeline 

All ships 21.1 20.3 20.6 

Labeled 20.2 19.4 19.7 

Unlabeled 20.1 19.4 19.7 

Unseen 21.6 20.8 21.1 

i-vector+PLDA pipeline 

All ships 21.5 20.6 20.4 

Labeled 21.6 20.6 20.5 

Unlabeled 21.2 20.2 20.0 

Unseen 21.5 20.6 20.5 

 

Table 2. Ship detection performance (EER) results with the NN 

and i-vector+PLDA pipelines for 1-minute segments. Results are 

shown for each subset of the impostors separately.  The best result 

in each row is shown in bold.  

 

Given the complementary strengths of the two modeling 

approaches, we show, in Table 3, the result of using a simple linear 

combination of the detection scores of the two methods: 

 

𝑠 = 𝑤 ·  𝑠1 + (1 − 𝑤)  ·  𝑠2 
 

where 𝑠1, 𝑠2 are the scores of the NN and the i-vector+PLDA 

methods for a particular test sample, respectively.  

 

Data Set Fusion EER 

All 18.8 

Labeled 18.1 

Unlabeled 18.1 

Unseen 19.2 

 

Table 3. EER Results with a fusion of the NN and i-vector+PLDA  

We used a single weight w for all target ships and all test 

segment trials and we tuned it on the dev set. The optimized weight 

w was 0.7. The EER decreased by 7.8% relative to the best method 

(the NN method).  

The following three tables show the effect of different 

experimental conditions on the results for the NN method and pFA 

normalization.  Table 4 shows EER for various segment sizes. As 

expected, EER is reduced with longer segments, as longer segment 

length provides more robust estimation of class posteriors.  

 

Segment duration EER 

5 seconds 22.7 

1 minute 20.3 

5 minutes 19.7 

 

Table 4. EER for various segment durations. 

 

Table 5 shows EER as a function of the maximum number of 

passages per ship in the training data. As expected, performance 

improves with more training data.  

 

Maximum 

# passages/ship 
EER 

1 35.4 

2 28.8 

3 26.8 

4 26.1 

5 24.6 

20 20.3 

 

 

Table 5. EER as a function of the maximum number of passages 

per ship in the training data. 

 

Finally, Table 6 shows EER as a function of the distance of the 

ship from the hydrophone. To make results comparable, the EERs 

are all computed based on the ships present between 3-4 km (77 

unique ships). Performance degrades with distance, which is an 

expected consequence of lower SNR with increased distance.  

 

Distance (km) EER 

3-4 16.8 

4-5 19.5 

5-6 21.1 

 

Table 6. EER as a function of the distance from the hydrophone. 

 

6. CONCLUDING REMARKS 
 

In this paper, we showed that two modeling approaches from the 

speaker identification field, a general one (neural networks) and a 

more specialized one (i-vectors and PLDA), can be used to tackle 

the individual ship detection task and result in almost identical 

performance. We found that the NN pipeline works best on trials 

with labeled ships seen in the training data and the i-vector+PLDA 

pipeline works best on (impostor) trials with unlabeled (or unseen) 

ships. A combination of these two gives gains on top of the best 

system.   
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