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ABSTRACT

Optimum counterforensics of the first significant digits entails a
forger minimally modifying a forgery in such a way that its first
significant digits follow some preselected authentic distribution,
e.g., Benford’s law. A solution to this problem based on the simplex
algorithm was put forward by Comesaña and Pérez-González. How-
ever their approach requires scaling up the dimensionality of the
original problem. As simplex has exponential worst-case complex-
ity, simplex implementations can struggle to cope with medium to
large scale problems. These computational issues get compounded
by upscaling the problem dimensionality. Furthermore, Benford’s
law applies beyond the first significant digit, but no counterforensics
method to date offers a solution to handle an arbitrary number of
significant digits. As the use of simplex would only aggravate the
computational issues in this case, we propose a more scalable ap-
proach to counterforensics of multiple significant digits informed by
the Majorisation-Minimisation optimisation philosophy.

Index Terms— Counterforensics, multiple significant digits,
Benford’s law, Majorisation-Minimisation.

1. INTRODUCTION

The field of counterforensics (also called antiforensics) studies how
to confuse digital forensic detection tests, whose goal is determin-
ing the authenticity of digital assets. In this paper we will first re-
visit and then extend the problem of optimum counterforensics of
the first significant digit (FSD). The main motivation for this prob-
lem is Benford’s law [1], which applies to the first significant digits
of datasets from diverse sources. Most multimedia security research
in this area has focused on the fact that Benford’s law (or its stronger
version) applies to the DCT coefficients of uncompressed images,
but not to those of their JPEG-compressed counterparts. As this en-
ables compression (or recompression) detection tests, one would like
to remove all deviation of the distribution of the FSD from Benford’s
law while minimally altering the image quality. The problem of FSD
counterforensics was first studied in [2], but without attempting op-
timality. Soon afterwards a second algorithm was proposed in [3],
which did not perfectly enforce the target distribution either. This
issue was solved in [4], but the distortion minimisation algorithm
therein was heuristic. Finally, a completely general solution to the
problem of optimum first-order counterforensics appeared in [5], and
its authors showcased their approach by applying it to the problem
of optimum FSD counterforensics. Here we present what we believe
to be the first contribution towards a low complexity implementation
of optimum counterforensics of multiple significant digits.

1.1. Notation and Preliminary Definitions

Boldface lowercase symbols are column vectors. The i-th element
of vector a is ai. Symbol 1 is the all-ones column vector, of length
given by the context. Capital Greek letters denote matrices; the entry
at row i and column j of A is (A)i,j . (·)t is the transpose operator.
vec(A) is the vectorisation of A by stacking its columns. ⊗ is the
Kronecker product. diag(a) is a diagonal matrix with a in its diago-
nal. In is the n×n identity matrix.. The 2-norm of a is ‖a‖ =

√
ata.

Calligraphic letters are sets, and |V| is the cardinality of set V . The
indicator function is defined as 1{θ} = 1 if logical expression θ is
true, and zero otherwise.

Let Sn be the symmetric group, namely, the group of all permu-
tations of {1, 2, . . . , n}. We denote a permutation σ ∈ Sn by means
of a vector σ = [σ1, σ2, . . . , σn]t where σi ∈ {1, 2, . . . , n} and
σi 6= σj for all i 6= j. This vector defines in turn a permutation ma-
trix Πσ with entries (Πσ)i,j = 1{σi=j}. We will just write Π wher-
ever a generic permutation matrix is considered. The reordering of
an n-vector x using σ is the vector y = Πσ x, for which yi = xσi
for i = 1, 2, . . . , n. We will call a rearrangement of x a unique re-
ordering of its elements. The rearrangement of x in nondecreasing
order is denoted by x↑, with elements x↑1 ≤ x

↑
2 ≤ · · · ≤ x↑n , and the

rearrangement of x in nonincreasing order is denoted by x↓.

2. OPTIMUM COUNTERFORENSICS OF THE FIRST
SIGNIFICANT DIGIT

We will first describe the problem and establish nomenclature. Con-
sider a forgery

¯
z = [

¯
z1, . . . ,

¯
zn]t ∈ Rn such that

¯
zi 6= 0 for

i = 1, 2, . . . , n. The first significant digit of
¯
zi is given by zi =

ϕ(
¯
zi) , b|

¯
zi| 10−blog10 |¯

zi|cc, where zi ∈ V = {1, 2, . . . , 9}. With
a slight abuse of notation, z = ϕ(

¯
z) is the vector containing all

first significant digits of
¯
z. Let also γi = sign(

¯
zi) 10blog10 |¯

zi|c,
i.e., 10 to the order of magnitude of the first significant digit of

¯
zi,

multiplied by its sign. The forger wishes to modify the forgery
¯
z

to produce a post-processed forgery
¯
y ∈ Rn whose first significant

digits exactly follow some target empirical distribution (histogram),
while simultaneously minimising ‖

¯
z −

¯
y‖2. Assume that the target

histogram is denoted by hx = [hx
1 , h

x
2 , . . . , h

x
q ]t, where q = |V|.

The bins corresponding to this histogram are given by a vector v =
[v1, v2, . . . , vq]

t whose components v1 < v2 < · · · < vq are the
elements of V . This histogram must fulfill 1thx = n, so that it cor-
responds to an n-dimensional vector. The constraint on the distribu-
tion of the post-processed forgery can be stated as hy = hx, where
the histogram of y = ϕ(

¯
y) is computed as hy

k =
∑n
i=1 1{yi=vk},

for k = 1, 2, . . . , q. Without loss of generality, we denote by x an
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arbitrary vector possessing the target histogram hx, for instance

x = x↑ = [v1, . . . v1︸ ︷︷ ︸
hx
1

, v2 . . . , v2︸ ︷︷ ︸
hx
2

, . . . , vq . . . , vq︸ ︷︷ ︸
hx
q

]t, (1)

Instead of starting with hx, the forger can pick some authentic sig-
nal

¯
x and then use the histogram of its first significant digits for

post-processing its forgery. We will call both
¯
x and x = ϕ(

¯
x) de-

coys, whether they correspond to authentic signals or whether they
are synthetic as in (1). In any case, the constraint hy = hx is com-
pletely equivalent to saying that y is a rearrangement of x. The num-
ber of rearrangements of x is given by the multinomial coefficient(
n
hx

)
= n!/(hx

1 ! · · ·hx
q !), and we will denote by Sx ⊂ Sn any set

of permutations leading to all rearrangements of x. Continuing with
our discussion, it must hold that y = Πσx, with σ ∈ Sx. Therefore
the problem of finding an optimum post-processed forgery

¯
y∗ with

the desired FSD distribution can be expressed as

¯
y∗ = arg min

¯
y∈Rn

y=Πx

‖
¯
z−

¯
y‖2. (2)

This problem superficially resembles the elementary counterforen-
sics problem solved in [6, 7], whose core formulation is

y∗ = arg min
y∈Vn

y=Πx

‖z− y‖2. (3)

Unlike (2), however, problem (3) has a straightforward solution, eas-
ily understood using the so-called rearrangement inequalities [8]

(z↓)ty↑ ≤ zty ≤ (z↑)ty↑, (4)

which hold for any two z and y ∈ Rn. Since ‖y‖ = ‖Πσx‖ = ‖x‖
for all σ ∈ Sx, (3) just involves the maximisation of zty = ztΠσx
over σ ∈ Sx. From the right-hand side of (4), zty ≤ (z↑)tx↑ =
ztΠt

σz
Πσx

x, where Πσz and Πσx are any two permutation ma-
trices that sort z and x, respectively, nondecreasingly. Therefore a
solution to (3) is y∗ = Πt

σz
Πσxx = Πt

σz
x↑. Unfortunately, this

simple strategy cannot be used in the special problem (2), as briefly
discussed in Section 3 using a simplified setting.

2.1. A Review of the Simplex Solution

Because of this fact, a simplex-based strategy to solve (2) was put
forward by Comesaña and Pérez-González [5]. Their strategy is in
fact general, and can also solve (3). For the sake of a self-contained
paper, we will summarise the approach in [5] in this section. The
core idea is transforming the integer nonlinear programming prob-
lem in (2) into a binary linear programming problem. The key el-
ement in the transformation is a class of n × q matrices which we
denote by the set Lhx . Any Λ ∈ Lhx fulfills three properties:

(Λ)i,k ∈ {0, 1} for all 1 ≤ i ≤ n, 1 ≤ k ≤ q, (5)
Λ1 = 1, (6)

1tΛ = (hx)t. (7)

One can see that |Lhx | =
(
n
hx

)
, i.e, the number of rearrangements

of x, and that, given any rearrangement y = Πσx, there is always a
unique Λ ∈ Lhx such that Λv = y. Therefore Lhx is isomorphic
to the space of solutions of problem (2). Consider next an n × q
cost matrix M such that (M)i,k is the minimum of (

¯
zi −

¯
yi)

2 when
yi = ϕ(

¯
yi) = vk ∈ V . In order to express these costs, define

bi,k ,

 10, if zi > vk + 4,
0.1, if zi < vk − 4,
1, otherwise.

With this definition, the optimum value of
¯
yi when its first significant

figure yi equals vk can be put as

¯
y∗i,k =

¯
zi, if zi = vk,
bi,kγi(vk + 0.9̇), if zi > vk or zi < vk − 4,
bi,kγivk otherwise,

(8)

where a dot over a figure denotes a repeating decimal. So the costs
are (M)i,k = (

¯
zi −

¯
y∗i,k)2. Since there is a one-to-one relation-

ship between the elements of Lhx and the rearrangements of x, then
problem (2) can now be recast using the cost matrix M as

Λ∗ = arg min
Λ∈Lhx

tr(ΛMt). (9)

Given the optimum Λ∗, we have that y∗ = Λ∗v, and the elements
of

¯
y∗ are obtained as in (8), i.e. if y∗i = vk then

¯
y∗i =

¯
y∗i,k.

Leaving aside for a moment the binary constraints in (5), (9)
is a regular linear programming problem with two sets of linear
constraints, which can be solved using the simplex algorithm. The
problem can be put in standard vector form using the identity
tr(ABt) = (vec B)t vec A in the objective function, and the iden-
tity vec(BA∆) = (∆t ⊗ B) vec A in the equality constraints (6)
and (7), which allow us to rewrite (9) as

vec Λ∗ = arg min
vec Λ

(vec M)t vec Λ (10)

s.t. (1t ⊗ In) vec Λ = 1, (Iq ⊗ 1) vec Λ = hx.

The final twist in the approach in [5] is that, even if (5) is ignored,
simplex guarantees that an optimum will be found on a vertex of the
feasible polytope defined by the constraints (6) and (7) and the non-
negative orthant, which implies that (5) will be implicitly fulfilled.

2.2. Not so Simple(x): Motivation for a New Approach

It would appear that optimum counterforensics of significant digits
stands solved by the strategy just described. However, the problem
deserves further attention mainly due to two reasons. First of all, bi-
nary linear programming is an NP-hard problem [9]. In connection
with this, the simplex algorithm has exponential worst-case com-
plexity [10], even though it has been pragmatically applied to many
problems due to its average polynomial complexity under some in-
put distributions. In any case, the fact is that simplex implemen-
tations can struggle in practice as the dimensionality of the problem
increases. Compounding this issue is the fact that recasting the prob-
lem (2) as (9) scales up dimensionality by a factor of q, as we go from
n to nq unknown variables. For these reasons, it would be desirable
to find an approach alternative to [5] without dimensionality increase
and with more scalable complexity.

The second stimulus for further research concerns the distribu-
tion of the digits that follow the first significant digit. The central
motivation for problem (2) was the situation where hx follows Ben-
ford’s law (up to rounding errors). However Benford’s law also ap-
plies beyond the first significant digit, to all subsequent figures [1].
This fact was used by Kirchner and Chakraborty [11] to level criti-
cism against the solution in Section 2.1, which is somewhat unfair
given that Comesaña and Pérez-González solely set out to settle the
then unsolved problem (2). Still, the authors of [11] are right about
the approach in [5] creating detectable artifacts: as it can be seen
from (8), in Comesaña and Pérez-González’s solution the figures af-
ter the first significant digit in the elements of y∗ will frequently
follow the patterns 000 . . . or 999 . . . Clearly this will break the
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general version of Benford’s law, which states that [1]

Pr(Vd = v) = log10

(
1 +

1

v

)
, (11)

where random variable Vd models the first d significant digits. The
support of this random variable is

Vd , {10d−1, 10d−1 + 1, . . . , 10d − 1}, (12)

and we have that |Vd| = 9 · 10d−1. For example, with d = 2,
V2 = {10, 11, 12, . . . , 98, 99} and |V2| = 90. For the aforemen-
tioned reasons, it would be desirable to enforce the distribution of
an arbitrary number d of significant digits. An added complication
is that (11) implies that significant digits in different positions are
statistically dependent [1]: consequently, it is not optimum to con-
sider the distribution of each i-th significant digit separately because
in this case the post-processed forgery will be detectable through
higher-order strategies [12]. Finally, enforcing the distribution of d
significant digits using a simplex approach like in Section 2.1 in-
volves n 9 · 10d−1 variables, which only adds to the computational
woes of simplex.

3. TOWARDS OPTIMUM COUNTERFORENSICS OF
MULTIPLE SIGNIFICANT DIGITS

Let us now reconsider (2), keeping in mind the two main goals stated
above. The main obstacle for a systematic solution of (2) without di-
mensionality increase is the lack of convexity of the objective func-
tion. This becomes clear when one considers the nonconvexity of (8)
with respect to the potential values of yi. For this reason we will
pose an alternative convex version of the problem, which will enable
finding a solution even when d significant digits are considered. The
main feature of our convex alternative with respect to (2) will be the
preservation of the order of magnitude of the first significant digits
of z. The absence of this constraint is the ultimate source of non-
convexity in (2). Moreover, if the priority is that the post-processed
forgery be undetectable when the detector uses digits beyond the
most significant one, then it makes no sense to push for maximum
fidelity by frequently forcing the digits after the most significant one
to follow the patterns 000 . . . or 999 . . ., as done in [5]. In order to
avoid the artifacts due to this strategy, we will leave unchanged all
forgery digits after the d first significant ones.

3.1. Problem Formulation

We now formulate the problem addressed in this paper, taking into
account the previous discussion. The vector z = ϕd(

¯
z) now con-

tains d significant digits for each element of the forgery
¯
z: zi =

b|
¯
zi|10−blog10 |¯

zi|c+d−1c, where zi ∈ Vd. We now define γi =

sign(
¯
zi)10blog10 |¯

zi|c−d+1, which is 10 to the order of magnitude
of the d-th significant digit of

¯
zi, multiplied by its sign. The target

histogram hx to be imposed on the distribution of the d most signif-
icant digits of the post-processed forgery

¯
y now has q = 9 · 10d−1

elements, and its bins are given by vector v = [10d−1, 10d−1 +
1, . . . , 10d − 1]t (the elements of Vd sorted in increasing order).

In the conditions discussed above, it is straightforward to verify
that ‖

¯
z−

¯
y‖2 = ‖Γ(z−y)‖2, where y = ϕd(

¯
y) gives the vector of

d significant digits of the elements of the post-processed forgery
¯
y,

and where Γ = diag(γ1, . . . , γn). Therefore the minimisation of
‖
¯
z −

¯
y‖2 conditioned to the histogram of y being equal to target

histogram hx (corresponding to decoy x) can now be expressed as

y∗ = arg min
y∈Vn

d
y=Πx

‖Γ(z− y)‖2. (13)

After solving this problem, the optimum post-processed forgery is
simply obtained as

¯
y∗ =

¯
z + Γ(y∗ − z). The formulation in (13)

resembles the elementary counterforensics problem in (3). Neverthe-
less, the strategy that solves (3) will not work here due to a simple
fact: ‖Γy‖ = ‖ΓΠσx‖ is not constant over σ ∈ Sx, which pre-
cludes a solution of (13) through direct application of (4). Still, (13)
can be solved using (10) by simply choosing (M)i,k = γ2

i (zi−vk)2.
For this reason, whenever the dimensionality of the problem allows
simplex to finish, we will use this method to gauge the performance
of the algorithm that we will propose next.

3.2. Majorisation-Minimisation (MM)

The main advantage of (13) is its convexity. If we define the objec-
tive function in (13) as

f(y) , ytΓ2y − 2ztΓ2y

(removing the constant term), it is straightforward to see that
∇2f(y) = 2Γ2 is positive definite. However (13) is also a prob-
lem on integer variables, and so the application of standard convex
optimisation techniques needs to be carefully thought out.

Many minimisation problems defy a closed-form solution, even
if the objective function f(y) is known to be convex. In this scenario
the Majorisation-Minimisation philosophy [13] propounds an itera-
tive optimisation approach based on a surrogate function g(y|ym)
with the following two properties:

f(y) ≤ g(y|ym), f(ym) = g(ym|ym). (14)

A function g(y|ym) fulfilling properties (14) is said to majorise
f(y) at y = ym. The key to implementing MM is finding a majori-
sation function easier to minimise than the original objective func-
tion. An iterative descent method becomes then possible by solving

ym+1 = arg min
y

g(y|ym), (15)

since, from (14) and (15) it follows that

f(ym+1) ≤ g(ym+1|ym) ≤ g(ym|ym) = f(ym).

In our problem, the following standard quadratic majoriser of the
objective function may be used:

g(y|ym) , f(ym)+∇f(ym)t(y−ym)+
1

2
(y−ym)tB(y−ym),

provided that B−∇2f(y) is positive semidefinite. We can guarantee
this by choosing B = 2µI , where µ , maxi γ

2
i . With this choice,

as∇f(y) = 2Γ2(y − z) the majoriser becomes

g(y|ym) = f(ym)+2(ym−z)tΓ2(y−ym)+µ‖y−ym‖2. (16)

In our problem, the use of a quadratic majoriser of a quadratic ob-
jective function is motivated by the fact that, under the problem con-
straints, (16) has a linear dependence with y rather than a quadratic
one: as ‖y‖2 must be constant when y = Πx, the only dependence
of g(y|ym) on y is g′(y|ym) , wt

my, where

wm , Γ2(ym − z)− µym. (17)

Therefore, an equivalent but simpler formulation of the optimum up-
date problem (15) is ym+1 = arg miny g

′(y|ym).
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3.3. Discrete MM

An MM iteration requires minimising wt
my constrained to y = Πx.

From the inequality on the left-hand side of (4) we have that

wt
my ≥ (w↓m)tx↑,

and therefore a solution to (15) is ym+1 = Πt
σw

x↑, where Πσw

is any permutation matrix that sorts wm nonincreasingly. As
g(ym+1|ym) = g(ym|ym) + 2wt

m(ym+1 − ym) a critical ques-
tion is avoiding that ym+1 − ym becomes orthogonal to wm before
reaching the minimum, as this will stall the iterative descent. The
reason for this potential issue is that the space of solutions is dis-
crete, and the optimum update ym+1 not unique whenever there
are sorting ties in w↓m (the usual case). Even though all possible
updates yield the same minimum of the majoriser in the m-th iter-
ation, wm+1 will vary depending on the choice of ym+1, and thus
influence the future course of the iterations.

We address next the enumeration and generation of all opti-
mum updates. In the remainder of this section we will drop the
subindex m from wm to simplify the notation. Let hw be the his-
togram of w on the bins defined by its qw unique values. Define
next vectors x↑k of length hw

qw−k+1, for k = 1, 2, . . . , qw, such that
[(x↑1)t, (x↑2)t, . . . , (x↑qw )t]t = x↑. If hx

↑
1 ,hx

↑
2 , . . . ,hx↑

qw are their
histograms, then the number s of different optimum solutions to (15)
is given by the following product of multinomial coefficients:

s =

qw∏
k=1

(
hw
qw−k+1

hx
↑
k

)
. (18)

We can spell out each of s solutions using block-diagonal permu-
tation matrices Ξσ1···σqw

= diag(Πσ1 ,Πσ2 , . . . ,Πσqw
), where

σk ∈ Sx↑
k

. There are s different Ξ-matrices, because |S
x
↑
k
| equals

the k-th multinomial in (18), and for any of them Ξσ1···σqw
w↓ =

w↓ (as Ξσ1···σq only permutes elements with equal value in w↓).
Thus, the optimum update associated to Ξσ1···σqw

is

y
(σ1···σqw )
m+1 = Πt

σw
Ξσ1···σqw

x↑.

We have been unable to analytically determine the best choice
among the s possible updates in order to guarantee no stalling.
However, we have empirically found that a good strategy for select-
ing ym+1 is to use Πσw corresponding to stable sorting [14] of w
and Ξσ1···σqw

chosen uniformly at random. This procedure works
well when the method is initialised close to the optimum, which is
what we deal with in the following section.

3.4. Continuous MM

In order to find a good initialisation for the method in Section 3.3 we
will solve a continuous version of (13), which we can state as

y∗c = arg min
y∈Rn

f(y) s.t. ‖y‖2 = ‖x‖2, yt1 = xt1. (19)

Here we let y ∈ Rn, but we constrain the solution to lie on the
same geometric loci as all y = Πx (i.e., the permutation sphere
‖y‖2 = ‖x‖2 and the permutation plane yt1 = xt1). The solution
of (19) is y∗c = (Γ2 − αI)−1(Γ2z + (β/2)1). Nevertheless this
is not a closed-form solution, because the Lagrange multipliers α
and β must be numerically computed. More critically, the numerical
issues for their determination are highly dependent on Γ and z.

However, we will see next that an MM approach, still based
on majoriser (16), enables an explicit solution at each minimisation

a)

n 103 104 105 106 107

d = 1
51.94 53.44 52.92 49.27 49.28 MM
51.97 53.40 52.94 49.27 — simplex

d = 2
51.02 50.04 49.98 50.04 50.01 MM
51.02 50.04 49.98 — — simplex

d = 3
52.61 50.08 50.02 49.99 50.01 MM
52.61 50.08 — — — simplex

b)

n 103 104 105 106 107

d = 1
59.68 60.33 59.95 55.19 55.22 MM
65.18 65.62 64.41 60.90 — simplex

d = 2
58.55 59.66 59.53 59.45 59.49 MM
65.05 67.18 66.26 — — simplex

d = 3
57.59 59.82 59.31 59.53 59.52 MM
60.49 66.46 — — — simplex

Table 1. Quality of post-processed forgery in PSNR (dB) for: a)
uniform forgery; and b) Gaussian forgery (standard deviation σz =
5). Benford’s law is exactly enforced for d significant digits.

step. Considering (17), the Lagrangian for minimising the majoriser
can now be put as υ(y) = wt

my − αmyty − βm1ty, where αm
and βm are Lagrange multipliers. Equating∇υ(y) to the null vector
and solving for y, we can see that the optimum update is

ym+1 =
1

2αm
(wm − βm1) . (20)

Plugging this solution into the two constraints we obtain two equa-
tions to solve αm and βm. The solutions to these equations are

βm =
1

n
(wt

m1)± 1

n
(xt1)

√
‖wm‖2 − 1

n
(wt

m1)2

‖x‖2 − 1
n

(xt1)2
(21)

and αm = (wt
m1−nβm)/(2 xt1). So we have two possible closed-

form possibilities for (20), only one of which decreases the majoriser
(by continuity and convexity). Therefore, in this case there is no
convergence issue, and the global continuous minimum y∗c is always
found using any rearrangement of x to initialise the method.

4. RESULTS

Table 1 shows empiricals results, using pseudorandom forgeries
¯
z of

size n ∈ {103, 104, 105, 106} drawn from two distributions known
not to comply with Benford’s law (uniform and Gaussian). A tar-
get hx following Benford’s law for d significant digits [i.e., (11) up
to rounding errors] is enforced for d ∈ {1, 2, 3}, as the law flattens
out for d ≥ 4. The continuous MM method (Section 3.4) is used
to find y∗c , and this solution is then used to initialise the discrete
MM method (Section 3.3) using y0 = arg miny=Πx ‖y∗c − y‖2.
The quality of the post-processed forgery

¯
y is measured using the

PSNR = 10 log10(n(2b − 1)2/‖
¯
z −

¯
y‖2) (dB) assuming b = 8

bits/sample, and the algorithm stops when the relative PSNR change
between iterations is smaller than 10−9. Whenever possible, the
simplex approach is also used to solve (13) as described in Sec-
tion 3.1, using the same

¯
z as in MM for each (n, d) pair. As shown

in Table 1 (marked with “—”), the simplex approach was not able to
provide a solution when d+ log10 n ' 8. The MM approach works
optimally with the uniform forgery, but falls behind simplex with the
Gaussian forgery due to the algorithm stalling. Still, unlike simplex,
MM enforces the desired distribution in all cases tested, always pro-
ducing relatively high quality post-processed forgeries. Even though
further work is needed to improve convergence, we have shown that
our proposal based on MM provides a promising practical way for
undertaking counterforensics of multiple significant digits.
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