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ABSTRACT 

 

Many proposed complex convolutional neural network 

(CNN) models in image forensics are with a large number of 

parameters, requiring a huge number of training data and 

having the risk of being overfitting. Considering the desired 

rotation invariance in the detection of some specific image 

manipulations, i.e., image enhancement, we propose 

employing convolutional filters with an isotropic 

architecture in the CNN model which can significantly 

reduce the required number of CNN parameters. With the 

same weights in symmetric positions, the proposed filter can 

extract rotation-invariant features for image enhancement 

forensics. Experimental results show that the proposed 

rotation-invariant CNN models with much less parameters 

can achieve much better performance, e.g., yielding more 

than 13% improvement in terms of detection accuracy  in 

Gamma correction forensics. It also achieves significantly 

better generalization performances on different databases 

and better robustness against JPEG compression when 

compared with the popular BayarNet in [16].  

Index Terms—Image enhancement forensics, 

convolutional neural networks, rotation invariant, 

constrained isotropic filter 

 

1. INTRODUCTION 

With the rapid development of digital media editing 

technology, digital image manipulation becomes very easy 

and convenient even for an inexperienced forger with the 

aid of user-friendly photo-editing software, e.g., Adobe 

Photoshop. During the past decades, multimedia forensics 

has been an active research area, and many blind forensic 

techniques were proposed by utilizing statistical fingerprints 

to verify the authenticity of digital multimedia data. 

Previous studies mainly focus on detecting different types of 

alterations, which can be broadly divided into two 

categories:

 

1) Non-content-changing operations, including resampling 

[1], compression [2] and  image enhancement operations 

which includes sharpening filtering [3], contrast 
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enhancement (e.g., Gamma correction [4]–[6] and S 

mapping [7])  and median filtering [8][9].  

2) Content-changing operations, e.g., splicing and 

composition [10]–[12].  

Image enhancement operations are commonly used as a 

retouching tool. While these operations alter the perceptual 

quality without changing the content of a digital image, their 

detections are still forensically significant. Since image 

enhancement may be used as a part of an operation chain to 

hide the forgery of an image, its detection can serve as a 

warning sign for possible image forgery. Much research has 

focused on identifying histogram peak/gap artifacts in 

images and then developing algorithms to detect these traces 

[4]–[7]. These forensic algorithms work well under the 

assumption that the gray-level histogram of an unaltered 

image exhibits a smooth contour. However, digital images 

are often post-processed in real applications, such as a heavy 

compression with a middle/low quality factor (QF). Post-

processing might weaken or even remove these aberrant 

features in gray-level histogram. In such a scenario, the 

existing approaches [4]–[7] may fail to detect the 

enhancement operations.  

In recent years, there has been a growing number of 

deep learning approaches used in blind image forensics 

[13]–[17]. These CNN models with a huge number of 

parameters require a large-scale training data to boost the 

performance. However, it is difficult to collect a large 

number of forensic images practically on demand, whereas 

training CNNs with limited data increases the risk of being 

overfitting. Therefore, designing a novel CNN architecture 

to learn robust and general forensic features with fewer 

parameters is vital for the effectiveness of detection. 

Rotation invariance is an important factor to be 

considered in the detection of image manipulations. Take 

contrast enhancement as an example, the enhanced image is 

created via linear or nonlinear mapping for each pixel to 

adjust global brightness and contrast of the original image. 

This operation of mapping is identical for the image no 

matter in rotation of a multiple of 90 degrees or in mirror 

symmetry. Rotation invariance is essential and a general 

feature for most of enhancement operations. 

In this work, we propose a novel rotation-invariant 

CNN and focus on six common enhancement operations 

including unsharp masking sharpening (UMS), Gamma 
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correction, S mapping, histogram equalization, median 

filtering and Gaussian filtering. Based on the state-of-the-art 

CNN architecture [16], all convolutional filters with the 

kernel size above one are replaced by the proposed isotropic 

convolutional layers. The constrained isotropic filter (CIF) 

layer of the proposed CNN serves as the pre-processing 

module to efficiently suppress the effect of image contents. 

The following convolutional layers with isotropic 

architecture can adaptively learn statistical features related 

to image enhancement detection.  Comparing with the 

original CNN [16], our proposed CNN model with much 

less parameters has shown better capability on image 

enhancement detections. Through a series of experiments, 

we also document the better generalization performance for 

different databases and the robustness against JPEG 

compression with a low QF. 

The rest of this paper is organized as follows. In Section 

2, we briefly introduce the proposed rotation-invariant CNN 

structure. Experimental results, comparisons and analysis 

are included in Section 3. Finally, the concluding remarks 

are drawn in Section 4. 

2. THE PROPOSED ROTATION-INVARIANT CNN 

A rotation-invariant CNN is proposed in this paper. 

Compared with the CNN architecture used for forensics 

applications [16] which is referred as BayarNet, all 

convolutional filter is replaced with an isotropic 

convolutional filter, which will be elaborated in Section 2.3. 

In [16], the authors have investigated the detection of certain 

image manipulations, but rarely focused on image 

enhancement detection, so we have redesigned the CNN 

with isotropic convolutional filters and successfully applied 

it to the detection of six common enhancement operations. 

Some design consideration are examined and justified 

through the experiments.  

2.1. Overall Network Architecture 

Fig. 1 illustrates the architecture of the proposed rotation-

invariant CNN, which contains 6 groups: one preprocessing 

layer (Group1), other four layer groups (Group 2 ~ 5) and 

one classification module (Group 6). The feature 

preprocessing layer is produced to feed to the first 

convolutional layer, while the last layer of the convolutional 

module outputs the features to a fully-connected layer 

followed by an n-way Softmax layer, which produces a 

distribution of n-class labels.  

In the original BayarNet architecture [16], a 5×5 

convolutional layer with the constrained filter (CF) serves as 

the preprocessing layer to adaptively learn pixel values 

dependencies. Extracting such dependency features may be 

effective for detecting operations based on adjacent pixels, 

such as MF, but it is not appropriate to detect histogram-

based operations. Therefore, we propose a constrained 

isotropic filter (CIF) layer to suppress the correlated 

components (image content) while largely capture useful 

statistical features related to the enhancement operations.  

In our investigation, the first five groups of BayarNet 

(including the preprocessing layer) are viewed as “feature 

extractors”, which are afterwards combined and compacted 

into a low-dimensional feature vector used for detection. 

Given the directional invariance of enhancement operations, 

we modify the convolutional layers of the first four layers 

into the isotropic architecture to force the statistical 

modeling to take into account the rotation invariance in 

enhancement-related features.  

In this way of design, the whole CNN can adaptively 

Group Output size Process 

Group 1 256×256 
Constrained Isotropic Conv 

3×(5×5) ,stride=1 

Group 2 64×64 

Isotropic Conv 

96×(7×7), stride=2 

BN+PReLU 

Max pooling 

3×3, stride=2 

Group 3 32×32 

Isotropic Conv 

64×(5×5), stride=1 

BN+PReLU 

Max pooling 

3×3, stride=2 

Group 4 16×16 

Isotropic Conv 

64×(5×5), stride=1 

BN+PReLU 

Max pooling 

3×3, stride=2 

Group 5 8×8 

Conv 

128×(1×1), stride=1 

BN+PReLU 

Average pooling 

3×3, stride=2 

Group 6 1×1 

fully-connected (200 neuros) 
PReLU 

fully-connected (200 neuros) 

PReLU 

fully-connected(classes neuros) 

softmax 

Fig. 1. Illustration of the proposed rotation-invariant CNN 

architecture. 

 

Fig. 2. The images (1st column) and their corresponding feature 

maps (2nd ~4th column) of the preprocessing layer obtained by (a) 

CF and (b) CIF respectively, on a raw image (top) and its enhanced 

(γ = 0.5) version (bottom).  
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learns the rotation-invariant 

features for image enhancement 

detection and thereby prevents 

the statistical modeling from 

grasping local content 

information. A series of 

experiments have verified that 

the proposed rotation-invariant 

CNN can extract more robust 

and general enhancement-

related features when compared with BayarNet.  

2.2. Constrained Isotropic Filter Layer 

A convolutional layer with constrained filter (CF) is used in 

[17] to suppress the image's content and adaptively learn 

manipulation detection features. To accomplish this, the filter 

in the preprocessing layer of CNN has the following 

constraints: 

{
 (   )    

 
     

 (   )   
                          (1) 

where, w(l, m) is the filter weight at the (l, m) position and 

w(0, 0) is the filter weight at the center of the filter window. 

Each filter in this layer is initialized by randomly choosing 

each filter weight, then the constraints in (1) are enforced. 

Here we enforce the aforementioned isotropic 

constraints, as illustrated in Fig. 3, to this preprocessing 

constrained filters and obtain the preprocessing constrained 

isotropic filters (CIF). The feature maps of the preprocessing 

layer for a raw image and its enhanced image (γ = 0.5) 

extracted via CF and CIF are visualized in Fig. 2. The raw 

image and its enhanced image are shown in the 1
st
 column in 

Fig. 2, the 1
st
-3

rd
 feature maps of the preprocessing layer are 

shown in the 2nd ~4th column in Fig. 2. For the display purpose, 

the values are normalized to [0, 1]. We can see more obvious 

contrast difference between CIF feature maps when 

compared with that of CF, suggesting that CIF is a better 

choice to extract enhancement-related features automatically. 

2.3. The Proposed Isotropic Convolutional Layer 

It is noteworthy that image manipulation might have the 

attribute of directional invariance, which can be used to learn 

robust and general features for detection. Filters of the 

convolutional layer allowing feature evolution freely into any 

form tend to extract some features irrelevant to the 

enhancement detection, (e.g. the content-dependent features). 

Therefore, we propose the convolutional layer with the 

following isotropic constraints. w(i, j) is the weight of a N × 

N (N > 1) filter at i
th
 row and j

th
 column. With the center w(N, 

N), all the other w(i, j) are both center symmetrical and 

mirror symmetrical. 

The weights of a 5 × 5 isotropic filter are shown in Fig. 3, 

the objects with the same shape indicate the weights with the 

same value. In implementation, during each iteration, each 

weight is updated based on the stochastic gradient in back-

propagation, then the average value of the weights in 

symmetric positions, i.e., the weights with the same shape as 

shown in Fig. 3, are calculated. The isotropic constraints are 

enforced via 

assigning the 

average value to 

the corresponding 

weights with the 

same shape.  

No matter 

rotated by a 

multiple of 90 

degrees, the filters 

performs same 

operations on 

images, thereby 

serve as the 

extractor that adaptively learns the properties of rotation 

invariance. Furthermore, the amount of CNN parameters can 

be significantly reduced. Take a 5 × 5 filter for instance, 

there are only 6 parameters in the isotropic filter which is 

around a quarter of the original one. With more filters, there 

would be more obvious advantages on reducing the number 

of parameters. As a result, the proposed CNN model with 

low complexity can be learned to extract robust and general 

enhancement-related features. 

3. EXPERIMENTAL RESULTS 

The primary database used in this study is BOSSbase v1.01 

containing 10,000 uncompressed images, which were 

initially taken by seven cameras in the RAW format and 

transformed to 8-bit gray-scale images. All images are 

cropped from the center to size of 256 × 256. The enhanced 

image versions are generated via the following 6 types of 

enhancement operations: unsharp masking sharpening 

(UMS) with different settings of σ and λ: σ = 1, λ = 1.5; σ = 

1.3, λ = 1; σ =0.7, λ = 1, Gamma correction with γ = 0.5 and 

2, S mapping, histogram equalization, median filtering with 

5 × 5 filter and Gaussian filtering with 5 × 5 filter. Therefore, 

for each classification problem, the dataset contains 10,000 

pairs of images. 8,000 pairs are randomly selected for 

training; the remaining 2,000 pairs are used for testing. In 

the training phase, each CNN submodel is trained on 6,000 

pairs and validated on 2,000 pairs. Only the training pairs 

contribute to updating the weights, and the validation pairs 

are used to determine when to stop the training of CNN. All 

experiments employing the CNN reported in this study are 

performed on a modified version of the Caffe toolbox on 

Nvidia Tesla K80 GPUs. The training parameters of the 

stochastic gradient descent approach are set according to 

paper [16]. A mini-batch of 64 images is used as the input 

for each training iteration. 

3.1. Comparison with Different Variants 
In order to investigate the influence of the numbers of the 

layers modified to the proposed isotropic architecture, we 

propose different variants based on BayarNet and test their 

accuracy for the detection of UMS with σ = 1, λ = 1.5. 

Considering the obvious of performance gap between 

different variant, here we use smaller images which are 

 

Fig. 3. The weights of a 

5×5 isotropic filter. 
 

Fig. 4. Comparison of the performance vs. 

epoch when employing different variants  

and BayarNet. 
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cropped from center to size 64 × 64. There are four variants 

considered: Variant 1 to Variant 4. The index of the variant 

indicates the number of isotropic convolutional layers. 

Variant 1 indicates that only the convolutional filters in 

Group 1 as shown in Fig.1 is isotropic, Variant 4 indicates 

that all convolutional filters in Group 1 ~ Group 4 are 

isotropic. In Fig. 4, the training accuracy of different 

variants and BayarNet are shown. It can be seen that all the 

variants outperform the BayarNet. Variant 4 is obviously 

better than Variant 1 and Variant 2. There is a slight 

improvement on accuracy when compared with Variant 3, 

but Variant 4 has the lowest model complexity in terms of 

the number of model parameters. Therefore, we choose 

Variant 4 as our proposed CNN architecture for image 

enhancement detection. 

3.2. Performance of the Proposed Scheme 

We compare the detection performance of the proposed 

CNN with BayarNet when tested on 256 × 256 images. 

Since the performance reaches saturation after 180 epochs 

as shown in Fig. 4, for fair comparison, both are trained 

under the same conditions, e.g., both through 200 epochs. 

Table I summarizes the test performances of their optimized 

models. It is observed that the proposed approach 

significantly outperforms BayarNet for all enhancement 

detections, especially for the challenging detection (e.g., 

GC). Compared with BayarNet, the proposed CNN approach 

improves the accuracies of GC detections by more than 9% 

forγ = 0.5 and 13% forγ = 2 respectively, and the average 

accuracy results for all the detections cases are improved by 

around 5%. 

3.3. Generalization Performance and Robustness 

To illustrate the better generalization performance of our 

proposed isotropic CNN, after both CNN models have been 

trained on BOSSbase database as mentioned in 3.2, we test 

both trained models on the benchmark BOW database, which 

consists of a total of 10,000 256 × 256 gray-scale images. 

Table II shows the accuracy results in detecting six 

enhancement operations. It is obvious that our proposed 

CNN model still achieves similar much higher accuracy than 

that of BayarNet despite the discrepancy of the database.  

To evaluate the robustness against JPEG compressiong, 

our optimized models mentioned in 3.2 are used to detect 

image enhancement under JPEG compression (QF = 40) via 

transferring leaning. For each kind of operation detection, 

the dataset used in section 3.2 are compressed with QF = 40 

to establish a new database with 10,000 pairs of images. 

8,000 pairs of the new database are randomly selected for 

training and fine-tuning; the remaining, 2,000 pairs, are used 

for testing. The parameters of the first five groups (Group 1 

~ 5) are transferred from aforementioned optimized models, 

as mentioned in 3.2, and fixed in the training. Those 

parameters of the classification module in Group 6 are 

trained with fine-tuning. The test results for assessing the 

robustness of our proposed CNN are reported in Table III, 

which demonstrates its robustness against post-processing 

even for low-quality JPEG compression. 

4. CONCLUSION 

Convolutional neural networks (CNNs) recently were shown 

promising in the field of digital image forensics, meanwhile 

how to learn robust and general features of forensics with 

fewer parameters remains an important and difficult problem 

to improve detection effectiveness. Given the directional 

invariance of image enhancement operations, in this paper a 

rotation-invariant CNN was proposed and successfully 

applied to six common image enhancement operations 

including unsharp masking sharpening (UMS), Gamma 

correction, S mapping, histogram equalization, median 

filtering and Gaussian filtering. The state-of-the-art CNN 

architecture for forensics applications is used for comparison. 

Our proposed isotropic CNN architecture can reduce a large 

amount of parameters and achieve higher accuracy on 

BOSSbase database for all six image enhancement operation 

detections. It also shows better generalization performances 

on the BOW database and improved robustness against JPEG 

compression. In the future, we plan to extend the proposed 

methodological framework and the algorithmic platform for 

the detections of other types of image manipulations, 

especially for the operations with directional invariance. 

TABLE III.  BOSSBASE:  DETECTION ACCURACY (%) FOR 

ENHANCEMENT UNDER JPEG POST-PROCESSING. 

Method / Operation type Proposed BayarNet 

UMS 

σ=1, λ=1.5 94.46 90.91 

σ=1.3, λ=1 94.71 89.96 

σ=0.7, λ=1 95.92 85.89 

Gamma 
Correction 

γ=0.5 93.88 86.45 

γ=2 95.02 80.92 

S Mapping 91.47 82.58 

Histogram Equalization 94.73 93.66 

Median Filtering 99.66 97.47 

Gaussian Filtering 99.05 98.95 

TABLE II.  BOW: DETECTION ACCURACY (%) FOR ENHANCEMENT. 

Method / Operation type Proposed BayarNet 

UMS 

σ=1, λ=1.5 97.39 94.89 

σ=1.3, λ=1 97.02 90.60 

σ=0.7, λ=1 97.25 87.17 

Gamma 
Correction 

γ=0.5 85.23 78.25 

γ=2 83.37 70.86 

S Mapping 89.99 87.68 

Histogram Equalization 98.25 95.50 

Median Filtering 99.05 98.97 

Gaussian Filtering 99.28 98.01 

TABLE I.    BOSSBASE: DETECTION ACCURACY (%)  FOR ENHANCEMENT. 

Method / Operation type Proposed BayarNet 

UMS 

σ=1, λ=1.5 98.54 95.93 

σ=1.3, λ=1 97.72 92.90 

σ=0.7, λ=1 97.39 89.19 

Gamma 
Correction 

γ=0.5 95.96 86.14 

γ=2 94.98 81.29 

S Mapping 96.21 94.25 

Histogram Equalization 99.22 97.83 

Median Filtering 99.98 98.91 

Gaussian Filtering 99.95 98.93 
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