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Sara Mandelli, Nicolò Bonettini, Paolo Bestagini, Vincenzo Lipari, Stefano Tubaro

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

ABSTRACT

Due to the increasingly unbridled practice of sharing visual content
on the web, tracing back past history of uploaded images is getting
far from being an easy task. Nonetheless, forensic analysts might be
interested in probing digital history of content published on the web
to assess its authenticity. In this vein, a possible indicator of image
integrity is the number of JPEG compressions a picture underwent.
As a matter of fact, JPEG compression is typically operated first at
image inception time directly on the acquisition device. Then, it is
customary re-applied every time an image is manipulated or shared
through social media. For this reason, the more the applied JPEG
compressions, the more the likelihood that an image underwent some
editing. In this work, we propose an algorithm to detect multiple
JPEG compressions, specifically up to four coding cycles. This ap-
proach leverages the Task-driven Non-negative Matrix Factorization
(TNMF) model, fed with histograms of the Discrete Cosine Trans-
form (DCT) of the image under analysis. Experimental results show
the effectiveness of the method if compared with the state-of-the-art,
confirming this strategy as a viable solution for detecting multiple
JPEG compressions.

Index Terms— Image forensics, multiple JPEG compression,
data-driven, non-negative matrix factorization

1. INTRODUCTION

Acquisition, editing and diffusion of images over the Internet are
nowadays widespread operations. Images available online are likely
to be the result of a multi-processing chain, engendering concerns
about their authenticity and integrity [1]. Therefore, multimedia
forensics community has been focusing on detecting potential pro-
cessing traces on images with the goal of restore faith in digital pic-
tures [2, 3]. In particular, due to the wide diffusion of JPEG im-
age coding scheme, there is wide literature devoted to investigate
and exploit traces left by JPEG compression both in forensic [4–6]
and counter-forensic [7–9] scenarios. Indeed, most of the images
available online are compressed according to JPEG standard, which
leaves on each picture peculiar traces that can be exploited for foren-
sic investigations.

Many of the forensic techniques proposed so far limit their goal
to the detection of double compression, i.e., they aim at discovering
if an image has been compressed once or twice [10–12]. Indeed,
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double compressed images are more likely been processed than sin-
gle compressed ones. In particular, several proposed approaches are
based on the investigation of quantized Discrete Cosine Transform
(DCT) coefficient statistics, which are characteristically shaped by
JPEG compression procedure. Some works embrace the analysis of
histograms of DCT coefficients [13–15], or DCT First Significant
Digit [16].

Recently, research on image forensics has started also to ana-
lyze chains of processing operations in order to model more real-
istic scenarios [17]. Nevertheless, the issue of identifying multiple
JPEG-compressions is, by far, a less investigated problem. How-
ever, in many practical situations, pictures under analysis might be
compressed several times. Think for example to the increasingly
widespread habit of sharing visual content on social media: the av-
erage user typically shot a picture with a smartphone (first compres-
sion), share it through a messaging app (second compression), and
the receiver may re-share it or post it on a social platform (third com-
pression). As a consequence, this operation necessarily results in an
“at-least-three-compression” chain for the image under analysis.

Given the strong likelihood of digital images to undergo more
than two compression stages, finding a method able to estimate the
number of endured JPEG compressions is of paramount importance
for the reconstruction of processing history of the investigated con-
tent. In this vein, the method proposed in [18] aims at identifying up
to three JPEG compressions through a testing scheme based on the
statistical analysis of Benford-Fourier coefficients [19]. The prob-
lem of detecting up to four JPEG compressions is addressed in [20]
by exploiting the First Significant Digit of DCT coefficient in ab-
solute values. The algorithm is based on Support Vector Machines
(SVMs) and allows to estimate up to four compression cycles.

In this paper, we propose a novel method for detecting up to
four JPEG compressions. In particular, we cast multiple JPEG com-
pression as four-class supervised classification problem. To solve it,
we exploit Task-driven Dictionary Learning (TDL) model described
in [21]. The goal of TDL is to learn a feature dimensionality re-
duction strategy based on sparse data representation, which mini-
mizes classification loss by jointly optimizing the dictionary used
for dimensionality reduction and the classifier. More specifically,
we propose to feed histograms of DCT coefficients as features to
TDL model. Given the non-negativity of these features (i.e., his-
tograms bin counts cannot be negative), this paper illustrates a more
specific formulation of TDL, namely Task-driven Non-negative Ma-
trix Factorization (TNMF) [22], which has proven to be even more
effective than deep learning paradigms situations characterized by
non-negative features [23].

The paper is structured as follows. Section 2 introduces the
problem formulation and some background. Section 3 reports a
detailed algorithm description. Section 4 shows the achieved re-
sults compared with state-of-the-art multiple JPEG compression
techniques. Finally, Section 5 concludes the paper.
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2. PROBLEM STATEMENT

During standard JPEG compression, input images are partitioned
into 8× 8 non-overlapped pixel blocks. Discrete Cosine Transform
(DCT) is computed for each one of them, and transform coefficients
are quantized into integer-valued levels depending on the selected
quantization matrix and quality factor (QF). Quantized values are
then converted into a binary stream, exploiting lossless coding. In
decoding phase, binary stream is decompressed, coded blocks are
reconstructed by applying inverse DCT on rescaled coefficients and
the image is re-built in the pixel domain [24].

Due to quantization, it is well-known in the literature that his-
tograms of DCT coefficients show a typical comb-like shape, and
spacing between consecutive peaks is related to the adopted quanti-
zation step size. Moreover, if an image is encoded many times with
different quality factors, the resulting quantization levels are modi-
fied accordingly [25].

In this paper we propose a method for detecting multiple-JPEG
compressions. This means, given an image, detect how many times
(up to four) it has been JPEG compressed. To do so, we leverage per-
turbations of DCT histograms that capture traces of multiple com-
pressions, and train a supervised classifier to discriminate between
images compressed different amount of times.

More in details, multiple-JPEG detection is performed using
Task-driven Non-negative Matrix Factorization (TNMF) algorithm
[21, 22, 26]. This method allows to reduce feature dimensionality,
which helps avoiding data redundancy, by jointly estimating a dic-
tionary for reduced data representation and a multinomial classifier
for multiple-JPEG detection. The rationale behind this choice is that,
by optimizing feature dimensionality reduction method, we should
be able to obtain better performance than methods that exploit first
significant digits as DCT histogram reduction methods [20].

3. PROPOSED METHOD

The proposed pipeline for multiple-JPEG compression classification
is depicted in Fig. 1. During training: (i) a feature vector is extracted
from training images; (ii) TNMF algorithm is used in order to jointly
learn a dictionary for feature reduction and estimate parameters of a
supervised classifier. When the system is trained, a new image can
be tested. To this purpose: (i) a feature vector is extracted from
the image; (ii) features are projected into a reduced dimensionality
space using the learned dictionary; (iii) classifier is used to detect
the number of compressions. In the following, we provide a detailed
analysis of each step of the algorithm and a simplified example of
how TNMF dimensionality reduction works.

Feature extraction. In order to start our analysis, we first ex-
tract a set of selected features from each image. We opted for the
feature extraction pipeline presented in [15], which exploits block-
wise DCT histograms of the image. Multiple compression stages
are well known to strongly condition the histograms of DCT co-
efficients, hence justifying our approach. In particular, the set of
investigated coefficients includes only the first 9 AC spatial frequen-
cies taken in zig-zag order. Our choice comes from the more regular
trend of lower frequencies coefficients and from the reduced statis-
tics of higher components, which are often quantized to zero [20].
For what concerns the histograms, we select only the first 21 central
bins for each DCT band, ending up with a feature vector x ∈ Rn

+

of n elements per image, with n = 189. Notice that x assumes
non-negative values only.

TNMF Training. Since we aim at classifying multiple com-
pressed images, we propose to exploit multinomial logistic regres-

TNMF

Fig. 1: Schematic representation of proposed pipeline.

sion, in a one-vs-rest implementation. This means that the multi-
class classifier is actually composed by four binary classifiers (e.g.,
one compression vs. others, two compressions vs. others, etc.),
and results of these are merged. For each class label, we train the
classifier by minimizing the logistic loss function, defined as ls =
ls(yi,A), where yi is the image label and A = {w, c} is the pa-
rameter configuration related to that class [27].

In particular, we propose to exploit Task-driven Non-negative
Matrix Factorization (TNMF), which is capable of finding sparse
data representations by learning a dictionary suited to the specific
task of classification [21]. TNMF model allows to learn the task-
driven dictionary and the classifier parameters in a joint iterative
fashion. More specifically, we estimate a classifier which is opti-
mized with respect to standard logistic regressor, thanks to a particu-
lar representation of input data: DCT features extracted from images
are projected on a dictionary that is actually tailored to our multino-
mial classification task. The algorithm works iteratively, alternating
the updating of classifier and dictionary, until a fixed number of itera-
tions is achieved. It follows an exhaustive illustration of the method.

a) Feature reduction. At each iteration t, TNMF starts with
feature reduction. First of all, we select as dictionary the one from
the previous iteration, hence Dt = Dt−1, with Dt ∈ Rn×p

+ . Given
a training vector xi generated from image Ii, TNMF model consid-
ers the optimal projections of data points on the dictionary, with the
constraints that all the elements of xi, Dt and the obtained projec-
tions are non-negative. Notice that p corresponds to the desired size
of reduced features, n is the input feature size, thus p < n.
Typically, the problem is formulated as follows:

hi,t(Dt) = arg min
h∈Rp

+

‖xi−Dt h‖22 + λ1||h||1 + λ2||h||22 . (1)

hi,t(Dt) ∈ Rp
+ is the estimated projection, λ1 and λ2 are regu-

larization penalty terms, in order to impose sparsity (`1 norm) and
to obtain a strongly convex problem (`2 norm) hence guaranteeing
a unique solution. Eq. (1) can be solved with standard techniques
available in the literature as shall be cleared in the experimental re-
sults section.

b) Classifier updating. Once we have defined the optimal pro-
jections, we can use them to update the classifier, associating each
vector hi,t to its related class label yi. This operation is performed
by the minimization of the expected value of loss function ls over
the entire training set:

wt, ct = argmin
w,c

Eyi,xi [ls(yi,w, c,hi,t(Dt))] + ν||w||22 , (2)

where ν is the penalty term of the regularizer, introduced to prevent
overfitting in the classifier. In the proposed framework, minimization
is solved by means of the L-BFGS iterative algorithm [28]. In other
words, this step consists in training the multi-class logistic regressor
exploiting projected training data samples hi,t and their labels.
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c) Dictionary updating. At the end of each iteration t, the dic-
tionary must be updated considering the trained logistic regressor at
step (b), thus obtaining Dt to be used during next iteration t + 1.
This is done through the minimization of loss function (2) with re-
spect to the dictionary Dt. In particular, we update the dictionary by
means of stochastic gradient descent, evaluating the function in each
training sample xi and minimizing in an iterative manner. In order
to perform this task, we have to re-evaluate the sparse representation
of each training data sample, hi,t(Dt), which depends on the dictio-
nary Dt estimated from already analyzed samples (xj , j < i). To
be more specific, the minimization is performed in two sequential
steps:

(i) We exploit stochastic gradient descent by calculating the gra-
dient with respect to hi,t(Dt). Since we work with sparse represen-
tations of data, we compute the active set S by selecting only the
indexes ∈ {1, ..., p} for which vector hi,t(Dt) 6= 0. For the sake of
notation, we introduce the variable gi,t, defined as:

gi,t = ([D>t ]S [Dt]S + λ2I|S|)
−1[∇hi,t(Dt)

ls(y,At,hi,t(Dt))]S

where symbol [·]S represents the projection on the active set, and |S|
is the cardinality of S.

(ii) It follows a projection of gi,t over the dictionary space, lead-
ing to this updating formulation:

Dt = Dt − ρt(−Dt gi,t h
>
i,t(Dt) + (xi −Dt hi,t(Dt))gi,t) .

In order to impose the non-negativity of each dictionary element, we
select ε = 10−7 as floor value in case of negative entries of Dt. The
learning rate ρt is chosen with the same heuristic criterion proposed
in [21]: we select it as min(ρ, ρ · niter/(10t)), being ρ a parameter
to set and niter the number of iterations. Given the conspicuous
theoretical baggage of TNMF, we skip all the formal derivations,
addressing the interested reader to [21] for a thorough explanation.

Following the typical framework of dictionary learning prob-
lems, we adopt a validation strategy for selecting the best dictionary
and classifier. More specifically, we split our data in training and
validation set, evaluating the classification accuracy on validation
set at each iteration t, and electing as best dictionary the matrix Dt

which returns the best accuracy. We report below the pseudo-code
of TNMF method.

TNMF Testing. Once we estimate the best combination of dic-
tionary and classifier, we are ready for test phase. Given any new

TNMF Training (y,X, p, niter , λ1, λ2, ν)→ Dbest,Abest

Initialize dictionary D0

Split training and validation sets:
ytrain, yval, Xtrain, Xval ← y, X
for t = 1, ... , niter

Initialize dictionary: Dt = Dt−1

Feature reduction: ht(Dt) ← Dt, Xtrain

Classifier updating: At ← ht(Dt), ytrain

Validation accuracy: acc ← Dt, At, yval, Xval

Dbest, Abest ← accmax{Dt, At}
for i = 1, ... , N

Single feature extraction: hi,t(Dt) ← Dt, xtraini

Active set: S ← indexes ∈ {1, ..., p} : hi,t(Dt) 6= 0

Update learning rate: ρt ← min(ρ, ρ t0
t
)

Update dictionary:
Dt = Dt − ρt(−Dt gi,t h

>
i,t(Dt) + ...

+(xi −Dt hi,t(Dt))gi,t)
Impose non-negativity: Dt(Dt < 0) = ε

end
end
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Fig. 2: Simple TNMF example: X is the matrix of data, specifically
N is the total amount of training samples. We can exploit TNMF to
approximate X as the product of the dictionary D and the matrix H
containing in its columns the optimal projections of X on D.

image Itest, we compute DCT histograms to obtain feature vector
xtest. By considering the best validation dictionary, Dbest, we ap-
ply (1) to project xtest and obtain the reduced feature vector htest.
Finally, we feed htest to the logistic regressor using the best valida-
tion configuration Abest in order to perform label prediction, as in a
typical classification problem.

TNMF Training: a simplified example. For the sake of sim-
plicity and data visualization, let us consider a simplified problem
consisting of a small dataset of images compressed up to three times.
From each image we extract feature x only considering the 7-th DCT
frequency, picking the first central 13 bins. Selecting as reduced fea-
ture size p = 3, we leverage TNMF training algorithm to find a
dictionary for representing our data. In particular, as we are working
in a simplified scenario aiming at a ternary classification (discrim-
inating up to three JPEG compressions), a good feature reduction
method should enable ternary classification in the reduced space.
Fig. 2 depicts the results of dictionary learning through TNMF: we
are actually able to estimate a dictionary, associating reduced fea-
tures to original input data (i.e., classification result is clear just by
looking at projected features). Notice that matrix X illustrates quite
well the effects of multiple quantization steps: the more the com-
pression stages, the lower the density of the histogram bins.

4. EXPERIMENTAL RESULTS

Datasets generation. Following the procedure depicted in [20],
we build three datasets starting from 1338 images from UCID [29]
(384×512 pixels). Given a final quality factor QFf ∈ {75, 80, 90},
we compress each grayscale image up to 4 times. The intermediate
QF at compression step i < f is randomly chosen in the interval[
QFi+1 − 12, QFi+1 − 5

]
∪

[
QFi+1 + 5, QFi+1 + 12

]
to ensure

that QFi differs from QFi+1. We refer to these datasets asDU
75,DU

80,
DU

90, each of them with 4×1338 = 5352 images. In order to test our
approach on a larger scale, we build three further datasets starting
with 4000 grayscale images from RAISE database [30]. Due to the
large dimensions of these images, we previously center-crop them
to 512× 512 pixels and then apply the aforementioned compression
pipeline. We obtain DR

75, DR
80, DR

90, each of them with 4 × 4000 =
16000 images.

TNMF parameters. We follow a common train-validation-test
approach, using 70% of each dataset images for training and the re-
maining for testing. Training set is further divided in training and
validation, following a 90%-10% partition. In particular, as recom-
mended in [21], we initialize the dictionary D0 by the unsupervised
formulation of the problem, leveraging the SPAMS toolbox for com-
putations [31]. The size of D0 has been chosen as trade off between
result quality and computational cost: we set p as the 30% of the
DCT length, hence drawing a dictionary ∈ R189×57

+ .
Moreover, in order to improve the convergence speed of the
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(a) UCID

(b) RAISE

Fig. 3: Classification accuracy of TNMF algorithm. (a) UCID
Dataset. (b) RAISE Dataset.

training phase, the proposed method works with a minibatch strat-
egy for the stochastic gradient descent. This basically takes into
consideration nbatch > 1 training samples at each iteration of the
inner loop, instead of a single one [31].

Due to the large amount of parameters of TNMF algorithm, we
select some specific values for tuning (i.e., iterations∈ {50, 100, 200,
500}, batch size ∈ {200, 400}, ρ ∈ {0.001, 0.005, 0.01}, λ1 ∈
{0.01, 0.1, 0.5}) and perform a grid search in order to obtain the
best accuracy on the validation set. In particular, being TNMF an
iterative algorithm, number of iterations has a severe impact on vali-
dation accuracy, thus we explore different values until convergence.

For what concerns the remaining parameters, we set λ2 = 0
drawing the idea from [21], even though λ2 > 0 would be neces-
sary for the differentiability of (1). This has proven to get satisfac-
tory results in most experiments. The penalty weight in (2) is left
untouched with respect to the standard formulation of logistic re-
gressor, hence ν = 1.

Comparison with state-of-the-art. At first glance, we notice
that the algorithm needs more iterations on RAISE-derived datasets
than on the UCID ones. This is probably due to the huge difference
in terms of dataset size. In this vein, Fig. 3 depicts the temporal evo-
lution of TNMF accuracy, evaluated for training and validation sets
on DU

75 and DR
75 . Notice that, if on DU

75 we achieve convergence in
at most 100 iterations, DR

75 requires more than 200 iterations. For
the sake of brevity, we are showing results for the specific combina-
tion of parameters which yields the best validation accuracy, and we
will stick to this approach from now on. Nonetheless, we performed
a comprehensive investigation on test results for all the parameter
configurations, obtaining puny variations among them (standard de-
viation of test accuracy < 0.01).

Tables 1 and 2 show results of the test phase, in terms of mean
accuracies and confusion matrices. Specifically, we compare our
strategy to [20] (i.e., the only algorithm that deals with four JPEG
compressions to the best of our knowledge) and to standard logistic
regression without the feature reduction step. This last experiment is
used to study the actual positive effect of dictionary projection.

Table 1: Mean test accuracies over 4 classes for proposed TNMF
method, classifier in [20], and logistic regressor (LR) without feature
reduction. Best results in bold.

UCID TNMF [20] LR RAISE TNMF [20] LR

DU
75 0.78 0.73 0.64 DR

75 0.80 0.76 0.64

DU
80 0.82 0.75 0.65 DR

80 0.81 0.75 0.64

DU
90 0.87 0.80 0.75 DR

90 0.87 0.83 0.74

Table 2: Confusion matrices for DR
80,DR

90. Top: proposed method.
Bottom: method in [20]. The highest accuracy among the two meth-
ods for a given compression step and dataset is highlighted in yellow.

DR
80 1 2 3 4

1 0.980 0.004 0.015 0.001
2 0.009 0.850 0.068 0.073
3 0.079 0.119 0.711 0.091
4 0.005 0.158 0.117 0.720

DR
90 1 2 3 4

1 0.997 0.002 0.001 0.000
2 0.005 0.952 0.022 0.021
3 0.022 0.048 0.833 0.097
4 0.000 0.126 0.175 0.699

DR
80 1 2 3 4

1 0.999 0.000 0.000 0.001
2 0.025 0.960 0.012 0.003
3 0.182 0.234 0.523 0.061
4 0.094 0.275 0.109 0.522

DR
90 1 2 3 4

1 1.000 0.000 0.000 0.000
2 0.130 0.863 0.004 0.003
3 0.029 0.088 0.828 0.055
4 0.020 0.179 0.165 0.636

For what concerns the accuracy, our solution is able to go beyond
the previously proposed method, since the overall average accuracy
(considering all the datasets) is 5.5 percentage points above the mean
accuracy of [20]. Regarding the confusion matrices, our results are
more accurate than [20] in detection of classes 3 and 4. Indeed, for
datasets DR

75 and DR
80 the diagonal terms corresponding to classes

3 and 4 present an average gap of +0.15 with respect to state-of-
the-art, which achieves acceptable multi-classification outcomes es-
pecially when QFf increases up to 90. Concerning the other classes,
our results are comparable to [20] for single compressed images,
while the detection of double compressed is slightly overwhelmed,
probably dictated by a better accuracy of further compressions.

Robustness. In order to preliminary test the method’s resilience
to editing operations in between JPEG compressions, we applied our
detector trained on DR

90 to images that randomly underwent either
blurring or gamma correction in addition to compression. This cam-
paign shows that if a single transformation is performed, accuracy
drops approximately by 10%. The main effect of the transformations
is to hide the previously applied JPEG compression. This paves the
way to thrilling future research scenarios.

5. CONCLUSIONS

In this paper we propose a novel method for detecting multiple JPEG
compressions, considering up to five coding steps. Our approach
takes advantage of Task-driven Non-negative Matrix Factorization
(TNMF) model, both for feature reduction and for classification,
through a joint iterative estimation of dictionary and classifier. We
extensively test several setups, taking into account different datasets
and quality factors. These experiments show that our method out-
performs up to date state-of-the-art [20] in terms of classification
accuracy. Given the promising results in classification of furthest
compression levels, future work will be devoted to raise the bar and
go beyond the fourth coding cycle. Moreover, we are looking for-
ward to focusing on the estimation of intermediate quality factors
still concerning multiple JPEG compressions.
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