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ABSTRACT 

 
Topological relation preservation is an important issue for 2D 
vector map reversible data hiding methods. Using the idea of 
controllable perturbation region (CPR), we propose a method that 
preserves topological relations between map objects. In particular, 
we propose calculating the CPR for each vertex and each line 
segment, selecting eligible vertices according to the CPRs of the 
vertex-line segment pairs, and embedding data into the eligible 
vertices in a reversible manner. Since the embedding operation on 
an eligible vertex does not change its relation with any line 
segment, topological relations between map objects can be 
preserved. Moreover, the calculation of CPRs not only ensures 
correct data recovery, but also provides good invisibility. We 
provide experimental results to demonstrate the effectiveness of 
our method. 

 
Index Terms— Reversible data hiding, topological relation 

preservation, 2D vector map 

 
1. INTRODUCTION 

 
A 2D vector map is normally composed of independent map 
objects (e.g., points, polylines and polygons), which accurately 
represent geographical objects in the real world. Due to high 
accuracy requirement for 2D vector maps in some applications, 
such as military and geological exploration, reversible data hiding 
has been introduced to this kind of data for transmitting secrets 
about the host vector map itself (e.g., authentication messages and 
metadata) [1]. 

Generally, hiding data in a vector map will distort the 
coordinates of the map. Although the distortion can be removed 
upon data extraction in reversible algorithms, it should be 
unnoticeable on transfer security grounds. This not only requires 
the embedding distortion to be below the precision tolerance, but 
also means the spatial relations (i.e., distance, directional and 
topological relations) between map objects should be preserved [2-
5]. This paper focuses on preserving the  topological relations. 

Topological relations describe the geometric relations 
between map objects that are invariant under affine transformations 
such as rotation, scaling, and translation. For instance, if a contains 
b, a remains to contain b if the vector map is rotated. Data hiding 
may modify the topological relations between map objects. For 
example, a and b are disjoint before data hiding (Fig. 1(a)), while 
after data hiding, the embedded a and the embedded b are 
intersected (Fig. 1(b)). Changes of topological relations may attract 

malicious attacks on the vector map or even lead to the acquisition 
of the camouflaged data. 

 

Fig. 1. Topological relation between two polygons before and after 
data hiding. 
 

There have been some 2D vector map reversible data hiding 
methods proposed (Table 1). The first article on this topic was 
published in 2004 by Voigt et al. [6]. They embedded data by 
modifying the integer discrete cosine transform (DCT) coefficients 
of the map coordinates.  As this algorithm is realized in the 
transform domain, it is difficult to control the embedding distortion. 
Based on the idea of difference expansion (DE) [7], Wang et al. [8] 
presented two methods: one takes the differences between 
coordinate pairs and the other adopts the Manhattan distance 
between neighboring vertices as the cover data. The distortion can 
be controlled, but the capacity is not very high. After that, some 
improvements [9-11] have been made to acquire higher capacity. 
Also aiming at providing high capacity, Cao et al. [12] have 
introduced a method based on iterative embedding. Furthermore, 
several QIM based methods which provide embedding distortion 
control ability and high capacity have been presented in [3, 13-15]. 
However, these algorithms cannot preserve the topological 
relations between map objects. This drawback is also shared by the 
afore-mentioned algorithms [6, 8-12]. A CAD engineering 
graphics, for which several reversible data hiding methods have 
been presented [16-20], may be considered to be content similar to 
a CAD drawing. But topological relations between objects cannot 
be preserved in these methods, either. 

In this paper, we propose a topological relation preservation 
method based on controllable perturbation region (CPR). This 
method can be integrated with several existing quantization based 
2D vector graphics reversible data hiding algorithms [3, 13-18]. In 
particular,  for a vector map to be embedded, the CPR of each 
vertex and the CPR of each line segment are first calculated. Then, 
according to the CPRs of the vertex-line segment pairs， the 
vertices are divided into two types: eligible and non-eligible. After 
that, eligible vertices are selected to hide data. While the selection 
of eligible vertices ensures topological relation preservation, the 
calculation of CPRs guarantees correct data recovery and good 
invisibility. 
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Table 1  Distortion control and topological relation preservation 
ability of some 2D graphics reversible data hiding methods. 

The work Embedding method Distortion 
control 

Topological 
relation 
preservation 

[6] DCT coefficient 
modification 

no no 

[8-11] DE yes no 
[12] Iterative embedding no no 
[3, 13-15] QIM yes no 

[16] 
Improved QIM and 
improved DE 

no no 

[17] 
Iterative embedding and 
QIM 

yes no 

[18] Improved QIM no no 

[19] 
Improved histogram 
shifting 

no no 

[20] Improved DE no no 

 

2. REVERSIBLE DATA HIDING WITH 
TOPOLOGICAL RELATION PRESERVATION 

 
2.1 Topological relation preservation 
 
Let us define a polyline as a sequence of adjacent line segments, 
each of which contains two connected vertices (Fig. 2(a)).  If the 
first vertex coincides with the last one, this polyline will be a 
polygon (Fig. 2(b)). Our method guarantees that no relation 
between any vertex and any line segment will change due to data 
hiding. Hence, the relation between any two line segments will 
remain the same, and the topological relations between map 
objects are preserved. 

 
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Fig. 2. (a) a polyline with four line segments, and (b) a polygon 
with five line segments. 

Let vi ( ix , iy ) be a vertex,  and Sj,k(vj, vk) be a line segment 

with vj  and vk being its two endpoints. There are four types of 
relations between vi  and Sj,k (Fig. 3) : 
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Fig. 3. (a) an example of type1 relation, (b) an example of type2 
relation, (c) an example of type3 relation (i.e., vi overlaps with vj), 
and (d) an example of type4 relation (i.e., vi is vj). 
 

type1: vi  is on one side of Sj,k 
type2: vi is on Sj,k 
type3: vi overlaps with one endpoint of Sj,k, i.e., vi is a 

           common vertex 
type4: vi is one endpoint of Sj,k 
For type4, vi is still one endpoint of Sj,k after data hiding. 

Since preserving the disjoint relation between the two endpoints of  
Sj,k will help to maintain the shape of the polyline or polygon Sj,k is 
within, we also consider this type. 

To avoid changing the relation between vi  and Sj,k from one 
type to another, we calculate the CPR for each vertex and each line 
segment, and select eligible vertices for data hiding based on the 
CPRs of the vertex-line segment pairs. 

 
2.1.1 CPR of a vertex and CPR of a line segment 
 
1) CPR of a vertex vi:  We define the CPR of vi as a region that 

not only contains both vi and its embedded version vi', but also 
can be correctly calculated during data extraction. We can 
calculate a CPR for each vertex for several existing 
quantization-based 2D vector graphics reversible data hiding 
algorithms [3, 13-18]. These methods hide data by moving the 
vertex within a quantization interval. After data hiding, both 
the vertex and its corresponding version are in the same 
quantization interval.  
For example, in [15], data are embedded into a vertex vi  based 

on the quantization of the distances between the vertex and two 
orthogonal lines. Assuming the quantization interval is Qw, vi and 
its corresponding watermarked version vi' are in the same square 
region Ri  with each side measuring Qw (Fig. 4(a)). vi  may move to 
any position within Ri due to data hiding, and Ri can be correctly 
calculated during data extraction according to vi' and Qw. Ri  can be 
regarded as the CPR of vi  for [15].  
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Fig. 4. (a) Ri of the vertex vi, (b) Li of the vertex vi, (c) the 
corresponding CPR of (a), and (d) the corresponding CPR of (b). 

2098



For one more example, in [16], data are embedded into a 
vertex vi  based on the quantization of the distance between the 

vertex and a fixed point vp (Fig. 4(b)). Assuming Qu (Qu = ub2 , 

where b,  and u are three embedding parameters in [16]) is the 
quantization interval, both vi  and vi' are in the same interval Li. vi  

may move to any position within Li due to data hiding, and Li can 
be correctly calculated during data extraction according to vi'. Li  

can be regarded as the CPR of vi for [16].  
For convenience of description, we regard the region CPRi, 

which is enclosed by the circumcircle of Ri (or Li), as the CPR of vi 
(Fig. 4(c), Fig. 4(d)). Denote the center and radius of CPRi by ci 
and r, respectively. 

2) CPR of a line segment Sj,k: According to the CPRs of vj  and vk 
(i.e., CPRj and CPRk), we can get the tubular region in which 
Sj,k may lie after data embedding (Fig. 5). We regard this 
region as the CPR of Sj,k, denoted by CPRj,k.  
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Fig. 5 (a) a line segment Sj,k, and (b) the CPR of Sj,k (i.e., CPRj,k). 
 

2.1.2 eligible vertex selection 
 
Let M be a 2D vector map to be embedded. We scan the vertices of 
M from the first vertex to the last, and mark each vertex as an 
eligible vertex or a non-eligible vertex, according to the CPRs of 
the vertices and line segments. If the embedding operation on a 
vertex does not change its relation with any line segment, i.e., it 
can be used to hide data, we call it an eligible vertex; otherwise, 
we call it a non-eligible vertex.  

For different vertex-line segment types, we have different 
vertex marking methods.   
vertex marking for type1: If CPRi and CPRj,k  are disjoint, vi  will 

remain on the same side of Sj,k after embedding, then vi  is 
marked as a possible eligible vertex (Fig. 6 (a)); otherwise, vi,  
vj  and vk are marked as non-eligible vertices to preserve the 
type1 relation. That is, 
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where c
kjS ,

 is the line segment between the center cj of CPRj 

and the center ck of CPRk, and DS(vi, 
c

kjS , ) represents a 

method that calculates the Euclidean distance between the 

vertex vi  and the line segment c
kjS , . 

1) vertex marking for type2: vi, vj  and vk are all marked as non-
eligible vertices for preserving the type2 relation. 

2) vertex marking for type3: Assume vi  overlaps with vj (Fig. 
6(b)). vi  may be a common vertex for several line segments. 
During this step, we only consider how to preserve the 
disjoint relation between vi   and vk, and the approach about 

how to preserve the overlapping relation of the common 
vertices will be given after this step. Here, if CPRi and CPRk 
are disjoint, vi  and vk will remain disjoint after data hiding, 
and vi  is seen as a possible eligible vertex; otherwise, vi, vj 

and vk are marked as non-eligible vertices for preserving the 
disjoint relation between vi  and vk. That is, 
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Fig. 6 (a) disjoint CPRi and CPRj,k  in type1 relation, (b) disjoint 
CPRi and CPRk  in type3 relation, and (c) disjoint CPRi and CPRk 

in type4 relation. 
 
3) vertex marking for type4: Assume vi  and vj  are the same 

vertex (Fig. 6(c)). For preserving the disjoint relation between 
vi  and vk, we mark the vertices by 
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If we have that vi  is a possible eligible vertex after checking 
all the relations between vi  and any line segment in the vector map, 
vi  is marked as an eligible vertex. If the eligible vertex vi  is also a 
common vertex (i.e., the vertex-line segment relation type between 
vi  and at least one line segment is type3), we call it an eligible 
common vertex. Then, vi  and the vertices that overlap with it 
should hide the same data in order to preserve the type3  relation.  

 

2.2 Data embedding and data recovery 
 
During data embedding, we embed data into each eligible vertex 
using one of the methods in [3, 13-18]. If a vertex vi  is an eligible 
common vertex, vi  and the vertices that overlap with it hide the 
same data. After data embedding, an embedded vector map M' is 
derived. Since the embedding operation on the eligible vertices 
does not change any vertex-line segment relation, the topological 
relations between map objects can be preserved.  

In the data recovery phase, the embedded eligible vertices are 
first selected using our topological relation preservation technique 
proposed in Section 2.1. After that, the hidden data are extracted 
from the embedded eligible vertices and the original content of M' 
can be recovered. Since the original CPRs of each vertex-line 
segment pair can be correctly calculated according to the received 
content, the embedded eligible vertices can be identified during 
data extraction. Therefore, correct data extraction and recovery can 
be ensured. 

 
3. EXPERIMENTAL RESULTS AND ANALYSIS 
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We ran some experiments on a set of vector maps to test the 
performance of the proposed reversible data hiding method. Four 
of the vector maps are a coastline map of Taylor Rookery [21] 
(M1), a coastline map of Windmill islands [22] (M2), a flying bird 
colony map of Rauer islands [23] (M3), and a forest map (M4). 
Table 1 gives the detailed information of the four vector maps, 
including the map object type, the number of map objects /vertices, 
the scale and the precision tolerance τ (i.e., the maximum distortion 
that a vector map can bear). During data hiding, [15] was used to 
hide data, and the parameters were selected as  b = s = 1.  

To evaluate the topological relation preservation ability, we 
define a metric TCR (Topological Change Rate) as 

 











2

N
TTCR c ,                                      (4)    (5) 

where cT  denotes the number of map object pairs whose 

directional relations have changed after data hiding, N represents 

the number of map objects of the vector map M, and 








2

N
 is the 

total number of combinations of 2 map objects selected from N 
map objects.  
 
Table 1 Properties of original vector maps 

Maps 
Map object 
type 

Map objects/ 
vertices 

Scale  (m) 

M1 polyline 18/4279 1:5000 0.5 
M2 polyline 496/38082 1:50000 5 
M3 polygon 42/3172 1:50000 5 
M4 polygon 26/15831 1:1000000 100 
 

Table 2 shows the TCR values of the proposed method and 
the methods in [12-13, 15-16]. We observe that due to the 
selection of the eligible vertices for data hiding, the proposed 
method preserves the topological relations between map objects. 
Since the relations between vertices and line segments are not 
considered in [12-13, 15-16], the topological relation preservation 
ability of the proposed method is better. 

 
Table 2 TCR values of different methods 

Maps  [12] [13]  [15] [16] Proposed 

M1 0.0131 0.0065 0.0654 0.0523 0.0000 
M2 0.0006 0.0001 0.0017 0.0017 0.0000 
M3 0.0244 0.0197 0.0197 0.0197 0.0000 
M4 0.0031 0.0031 0.0123 0.0031 0.0000 
Average 
of 50 
maps 

0.0034 0.0022 0.0102 0.0118 0.0000 

 
For measuring the distortion introduced by embedding, the 

average distortion d(M, 'M ) and the maximum distortion 

Maxd(M, 'M ) were used, 
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where vi  and vi' are the corresponding vertices in the original 
vector map M and the embedded vector map 'M ,  and n denotes 

the total number of vertices in the vector map M. Table 3 shows 
the d values and the Maxd values of the proposed method and the  
methods in [12-13, 15-16]. From Table 3, we can see that the d 
values and the Maxd values of the proposed method are smaller 
than [12]. The method in [12] hides data by adding/subtracting a 
real number to/from each vertex set, and some higher digits may be 
modified when the added/subtracted real number is too great. We 
can also observe that the invisibility of the proposed method is 
comparable to [13, 15]. That’s because we use [15] to hide data, 
and the embedding parameter selection technique of [15] can 
guarantee that the distortion does not exceed the precision 
tolerance τ of each vector map. When applying [16] to a 2D vector 
map, the distortion introduced by embedding  may not be well 
controlled, e.g., M2, M3 and M4. That's because the quantization 
interval is closely related to the distance between two reference 
vertices in [16], and the random selection of the reference vertices 
may make the embedded vector map quality undesirable. The 
proposed method provides better invisibility than [16]. 
 

Table 3 Maxd and d values of different methods (m) 

Metric Method M1 M2 M3 M4 

Maxd 

[12] 4.958 27.039 33.590 704.559 
[13] 0.245 2.493 2.481 49.880 
[15] 0.389 4.147 3.967 80.447 
[16] 0.041 28.679 5.498 389.301 
Proposed 0.415 3.937 3.554 78.512 

d 

[12] 0.336 4.577 6.072 149.859 
[13] 0.134 1.322 1.323 26.922 
[15] 0.161 1.610 1.615 32.508 
[16] 0.017 12.407 2.394 168.195 
Proposed 0.128 0.445 0.377 12.574 

 
 

4. CONCLUSIONS 
 

In this paper, we describe a 2D vector map reversible data hiding 
scheme with topological relation preservation. By calculating the 
CPR for each vertex and each line segment, and selecting eligible 
vertices according to the CPRs of the vertex-line segment pairs for 
data hiding, topological relations between map objects can be 
preserved.  

In this paper, the topological relation preservation method 
was described as integrated with [3, 13-18]. The method can, 
however, be integrated with other data hiding algorithms (e.g., [24]) 
in order to preserve the topological relations between map objects, 
as long as the data hiding algorithm can calculate a CPR for each 
vertex. 
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