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ABSTRACT

This paper presents a different way to improve the resistance
of digital watermarking. Using the well known Lattice QIM
in the spatial domain, we analyze the interest of using a differ-
ent kind of error correcting codes: rank metric codes. These
codes are already used in communications for network coding
but not used in the context of watermarking. In this article, we
show how this metric permits to correct errors with a specific
structure and is adapted to specific image attacks. We pro-
pose a first study to validate the concept of rank metric for
watermarking process. For this, we use these codes to obtain
invariance against luminance additive constant change.

Index Terms— watermarking, rank metric codes, gabidulin,
luminance, structured errors

1. INTRODUCTION

Image watermarking is an important area of research. An ex-
ample of motivation is the strong need to protect online multi-
media contents. To insure copyright and intellectual property
over massive online distribution, we need efficient protection
to control the distribution, stop manipulations and duplica-
tions by pirates or unaware normal users.

To be efficient, a watermark needs to be impercepti-
ble, needs to embed high capacity payloads and has be to
robust [1] against the most common image processings (ma-
licious or not) while ensuring a secure transmission of the
payload [2].

A very useful tool to enchance the robustness of a mark is
the use of error-correcting codes which permit to correct er-
rors induced by a given attack. Now, depending on the attack
and on the structure of the induced errors, the type of codes
used can be more or less efficient. For instance, if the error
induced on the mark is random, the best results are obtained
with binary codes, like BCH codes for instance (in the case of
small lengths).

For other attacks, it may happen that the error comes in
packet. In that case, it is better to use more structured codes
over a larger alphabet (say GF (2m)), like Reed-Solomon
codes where decoding is done by packets [3]. One does not
decode error independently on each bit, but on packet of m
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bits, so that an error on each bit of the packet or only one error
on one bit of the packet is corrected the same way. Therefore,
based on the attack, i.e. based on the error type, we can
choose an adapted error correcting code. This point of view
on the error type is rather well known and led to numerous
industrial applications of these Hamming codes.

In this paper, we consider a new type of metric called rank
metric. Error correcting codes using this metric are already
often used in network coding [4] and cryptography [5]. It
permits to correct errors with a specific structure. If one con-
siders a code over GF (2m) of length m. Each coordinate of
a codeword overGF (2m) is encoded bym bits, and since the
code has length m, any codeword can be seen as a m × m
matrix. Now, it is possible to correct errors for m ×m error
matrix of low rank. For instance, consider an attack on the
mark which flips every bits of the mark, if one consider the
usual Hamming metric, it is not possible to correct this error
since all bits are false. Meanwhile, in terms of rank metric,
the associated error matrix has rank 1 (because it is filled with
ones only) and hence, the received modified matrix can be de-
coded and the original message retrieved.

Our contribution: we introduce the rank metric (section
2) and Lattice QIM method (section 3). Then, we propose
a watermarking process that uses both concepts able to deal
with structured errors produced by a luminance modification
that are not handled by conventional Hamming codes. We
explain why such structure exists in this case and provide an
enhanced Lattice QIM decoder for theoretical error free de-
coding against this attack.

2. RANK METRIC CODES
2.1. Definitions and properties

We refer to [6] for more details on rank metric codes. Let us
consider B = (β1, ..., βm) a basis of GF (qm) over GF (q).
Consider now x = (x1, ..., xn) ∈ GF (qm)n. The rank of
x over GF (q) is the rank of the matrix X = (xij), where
xij =

∑m
i=1 xijβi. It is denoted by Rank(x|GF (q)), or

by Rank(x) when there is no ambiguity. Let x and y in
GF (qm)n, one defines the rank distance between x and y as
dR(x, y) = Rank(x − y). As the rank of a vector is inde-
pendant of the basis, it is obvious that the rank metric is less
precise than the Hamming metric as two vectors with differ-
ent Hamming distance could have the same rank. The linear
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rank code C of length n and dimension k over GF (qm) is a
subspace of GF (qm)n. The minimum rank distance of C is
defined as d = min(dR(c1, c2), c1, c2 ∈ C|c1 6= c2).

2.2. Decoding rank metric codes

Classical bounds for Hamming distance can be adapted in
rank metric context and the same type of decoding results
hold. If a rank code C has minimum distance d and one re-
ceives a vector y = c + e, for c ∈ C and e an error vector
of rank less than (d − 1)/2, it may be possible to uniquely
decode y in c. Unlike classical Hamming codes, only few
families of codes with easy rank metric decoding are known.
Gabidulin codes is one code family among them and has pa-
rameters [n, k, n− k+ 1] over GF (qn). These codes can de-
code up to (n− k)/2 errors and can be seen as an analogous
family in rank metric of the well-known Reed-Solomon codes
family. Different approaches to decode Gabidulin codes have
been proposed in the literature such as [7, 8].

2.3. Rank metric codes in practice

In practice, we use codes in an extension GF (qm) of GF (2),
and one associates a binary vector of length m to any coordi-
nate of the codeword, so that a codeword c can be seen as a
m×m binary matrix. After an attack on the watermark, code-
word c is modified with error e, which also is a m×m binary
matrix. To evaluate if the rank metric is better than the clas-
sical Hamming metric, we compare the embedded watermark
(a codeword c) with the modified watermark (y = c+e). Sup-
pose m = 4. Let c be a codeword and y = c + e a modified
codeword such that :

c =


1 0 1 0
1 1 0 1
1 0 0 1
1 1 0 1

 , y =


1 0 1 0
1 0 0 0
1 0 0 1
1 1 1 0


Then, the error matrix is:

e =


0 0 0 0
0 1 0 1
0 0 0 0
0 0 1 1


The error matrix e has rank 2, hence, if the code can cor-

rect up to 2 rank errors, then it is possible to decode y into c.
In terms of Hamming metric, if we had started from a length
16 binary code, it would correspond to an error of weight 4.
In that particular case, it is possible to find both Hamming or
rank metric codes which can decode this type of errors, for
reasonable dimensions k. Suppose we now have an error ma-
trix such that:

e =


1 1 0 1
1 1 0 1
1 0 0 0
1 0 1 1



The Hamming weight of e is 9 and the rank of e is 4. We
see that it is not possible to decode with both metrics with this
error matrix. In fact, rank metric is more interesting when the
error has a particular structure such as:

e =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0


With Hamming metric, there are still 9 errors out of 16

bits transmitted, no binary code of length 16 is able to de-
code properly while with the rank metric, the rank of e is only
1. We can easily decode with such error (for instance, with
a Gabidulin code of parameters [4, 2, 3]). Of course, such a
structured error does not happen necessarily often. In the fol-
lowing, we show that this type of error may happen in a cer-
tain case where the rank metric behaves better than the clas-
sical Hamming metric in watermarking applications. In the
next section, we introduce an embedding method we used to
combine with rank metric codes.

3. LATTICE QIM (LQIM)

Vector quantization was introduced by B. Chen and Gregory
W. Wornell ([9, 10]). To embed binary information, we have
two cosets of the lattice ∆ZL cosets of dimension L and a
quantizer Qm:

Λ0 = −∆

4
+ ∆ZL,Λ1 =

∆

4
+ ∆ZL

y = Qm(x,∆) =
⌊ x

∆

⌋
∆ + (−1)m+1 ∆

4
,

(1)

with x a host sample, y the quantized sample and m = 0, 1.

• •

• •

×

×

×

×

∆

Fig. 1. Representation of the lattice or quantization space with
L = 2 and quantization step ∆. Crosses represents quantiza-
tion vectors carrying bit 1 and bit 0 are carried by circles.

Figure 1 illustrates an example of the lattice space in di-
mension L = 2. For any circle or cross (say a quantized
vector y), the diamond delimited by the dotted lines will be
denoted by ”quantization cell”. To embed information in x,
one can quantize x to the nearest quantization cell center y.
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For detection, we compute which coset is closer to the
received vector z:

m̂ = arg min
m∈{0,1}

dist(z,Λm),

dist(z,Λ) = min
y∈Λ
‖z − y‖2

(2)

As an illustration, z will be decoded into y the quantization
cell center where z is located. In the next section, we explain
how the experiment results allow us to see the error structure
produced by a luminance modification on a LQIM watermark
coupled with a rank metric code.

4. STUDY OF THE LUMINANCE ATTACK
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Fig. 2. Red curve : Binary error rate of LQIM method in func-
tion of β. This curve is similar when β is negative. Blue curve
: Image error rate of LQIM method combined with a rank
metric code in function of β. Each point of the blue curve rep-
resents the ratio of images where the error rank Rank(e) ≥ 2
(failed decoding).

Results were made using the Corel image database where
1000 images where randomly chosen for our tests among the
10000 images available. Embedded messages are randomly
generated binary sequences of 49 bits withL = 6 and ∆ = 28
so that image quality is maintained at DWR = 35db in the
spatial domain. Pixel values were randomly chosen in an im-
age to embed the message (in total, 49×6 = 294 coefficients).

4.1. Detection analysis after attack

The first experiment shows binary error rates (BERs) between
the original payload and the decoded payload in function of
the luminance constant β. The following equation illustrates
how the luminance additive constant change of parameter β
acts on a quantized vector y:

z = y + β × u (3)

with u = (1, ..., 1) ∈ RL and z a corrupted version of y.
When β increases, z saturates. From a geometrical point of

view (in 2D for figure 1), every z travel from one quantization
cell to another flipping the embedding bit at every quantiza-
tion cell change. In figure 2, one can notice that the red curve
looks like a square waveform and we can distinguish three
cases: β = 0, 0.5, 1. In the first case, there is no error at detec-
tion at regular intervals (such as β ∈ [14, 21[). Then, the third
case is similar to the first case; BER = 1 also happens at reg-
ular intervals (such as β ∈ [5, 14[). This third case represents
situations when every bits of the payload are flipped. The
second case (BER = 0.5), detected payloads are random se-
quences. Unlike the previous cases, β = 0.5 only happens for
specific values instead of intervals (β = 4, 21, 40, ...). This
curve clearly shows the existence of a partially structured er-
ror form. Moreover, rank metric codes are well suited against
this type of error.

4.2. Luminance error structure

When we apply a luminance modification on an image, every
quantized vectors will suffer the same distortion of the form
z − y = βu according to equation 3. In other words, if we
imagine the quantization space as in figure 1, every corrupted
vectors z will travel through the quantization cells. Indeed,
BER = 0 means that every z are located in a cell carrying
the original bit, not necessarily the one it was quantized at
embedding. When BER = 1, every z are located in a cell
carrying the opposite version of the embedded bit. In the next
subsection, we show how a rank metric code can remove the
majority of errors.

4.3. Rank metric codes application

As a second experiment, we used a rank metric code of pa-
rameters [7, 3, 5] (corrects at most errors of rank 2) and mea-
sured Image Error Rates (IERs) and embedded a codeword as
the watermark payload. IERs are the ratio of images where
the message was not decoded by the rank metric, i.e., the er-
ror rank Rank(e) ≥ 2. In figure 2, this code is very efficient
because IERs are 0 for every β except at four values. When z
makes the transition from one cell to another, LQIM decoder
decodes with BER = 0.5 (which means we have full rank
errors). On the other hand, a similar parameters Hamming
code is [47, 23, 11] and corrects at most 5 binary errors over
47 bits. In that case, the IER curve obtained with this code
is identical to the red BER curve because either we have no
binary error either every bits of the payload is flipped, i.e., the
Hamming metric is inefficient against this attack. In practice,
the decoder cannot guess β and the probability to find β such
that errors are not structured for rank metric codes depends on
∆ : a small value means a higher probability to decode with
errors. Moreover, the red curve in figure 2 does not look like
a square waveform for some images due to the random nature
of the pixel values they contain. Some BER values might be
slightly under 1 or slightly above 0, this is why we choose, for
a start, a rank metric code of parameters (7, 3, 5) correcting at
most errors of rank 2 to correct more errors. Theoretically,
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a code correcting errors of rank at most 1 is enough. In the
context of a luminance image processing, these codes pro-
vide almost perfect error correction. In the next subsection,
we show how to improve the LQIM rank metric decoder.

4.4. Enhanced LQIM rank metric decoder

The luminance channel is parametrized by the additive con-
stant β. Suppose a watermarked image is damaged by this
channel. At decoding, we have the modified versions z =
y + β. Equation 3 shows how to improve the decoder per-
formances by adding a controlled luminance modifications.
Periodically, one can notice that we cannot properly decode
for β =

√
2∆/4 with k ∈ Z. This case represents transition

states traveling from one quantization cell to another, i.e., vec-
tors z are located at the boundaries of quantization cells.
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Fig. 3. Image error rates of LQIM method combined with a
rank metric code in function of β with controlled distortions
using δ = 0, 2, 4 to shift error rates curves from one to another
(spike shift).

Let δi ≤
√

2∆/4, δi ∈ N, 1 ≤ i ≤ n. Then, from fig-
ure 3, we deduce the following property: there is a unique i
such that the corrupted image with z + δi cannot be well de-
coded with LQIM rank metric decoder and for every j 6= i,
corrupted image with z + δj is perfectly well decoded with
LQIM rank metric decoder. By modifying z with δi, we guar-
antee to have the majority of z + δj perfectly decoded. A
majority vote strategy on the decoding of multiple attacked
image can get rid of the spikes at the only cost of time decod-
ing. Taking n = 3 suffices to have good results with this de-
coding strategy. We have d =

√
2∆/4, δ1 = 0, δ2 = d/3 and

δ3 = 2d/3. In the experiments, d ' 6 and we used δ1 = 0,
δ2 = 2 and δ = 4 and they represent modified versions of
transmitted z. Then, we extract 3 estimations of the original
payload. Using the proposed property, two out of the three
payloads are correct given fixed β. In figure 4, error rates are
0 for almost every β. For non-zero values, some images may
have lost some information because of the image processing,
so it is impossible for the proposed method to retrieve those
information.
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Fig. 4. Red and blue curves respectively represents BER and
IER of LQIM embedding with enhanced LQIM rank metric
decoder in function of β. Experiments with ∆ = 28, 8 are
showed.

As a summary, we proposed a strategy to improve the
LQIM decoder combined with a rank metric code. Cases
where BER = 0.5 can be avoided by taking an average es-
timation of multiple decoded payloads where the luminance
parameter was modified on purpose. With this enhanced de-
coder, it is possible to use smaller quantization steps for more
invisible watermark (see figure 4 with ∆ = 8). Indeed, the
correction ability of rank metric codes eliminates all errors ex-
cept at some particular β values. Using the proposed property,
we can shift curves i.e. IER spikes and compute the majority
vote of payloads. Compared to other approaches against lu-
minance image processing (such as embedding in the low fre-
quency coefficients in the DCT domain), we innovate with a
theoretically perfect resistance with weak quantization noise
at the cost of some capacity (code rate k/n). Due to space
constraints, we chose to focus on the luminance image pro-
cessing to fully understand how rank metric codes work. Re-
sults are very interesting for luminance because of the error
structure but less interesting for others attacks (such as JPEG
compression and additive white gaussian noise) where the er-
ror type is less structured.

5. CONCLUSION

We introduced a new kind of error correcting codes which
uses the rank distance instead of the usual Hamming distance.
Then, we studied the robustness of the association of LQIM
method and rank metric codes against luminance image pro-
cessing. We proposed an analysis of the luminance attack and
showed that rank metric codes provide great correction power
because of the errors structured nature. A first application
of these codes with Lattice QIM method provided good re-
sults but some errors still remain (spikes). Finally, we gave a
method to enhance the LQIM rank metric decoder to obtain
a theoretically error free decoding. Rank metric codes can be
of great interest in digital watermarking. Of course, this result
is limited to luminance modifications and similar attacks. As
a perspective, we plan to study more about how rank metric
codes can be applied in digital watermarking.
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