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ABSTRACT

This paper proposes a watermarking method for speech signals
based on Robust Principal Component Analysis (RPCA) and for-
mant manipulations. As the spectrogram of speech has a rela-
tively sparse structure, the core information of speech is extracted
into a sparse matrix using RPCA so that formants can be esti-
mated with Linear Prediction (LP) more accurately even under
noise/interferences, which significantly improves the robustness of
proposed method. We investigate how the formants can be con-
trolled and manipulated to make the watermarking method effective.
Watermarks are embedded into speech by controlling the shape and
power of formants using the stable and robust parameter, i.e., line
spectral frequencies (LSFs). Evaluations regarding inaudibility and
robustness are carried out and the results suggest that the proposed
method can not only satisfy inaudibility but also provide good ro-
bustness against general processing and different speech codecs
which is better than the other methods.

Index Terms— Robust principal component analysis, Linear
prediction, Formant, Line spectral frequencies, Robustness

1. INTRODUCTION

Speech signal is an important information carrier in many social ap-
plications such as WeChat and GoogleTalk. However, modern digi-
tal technologies have put the security of speech at risk. Watermark-
ing is a promising solution to protect speech signals. A general
watermarking should be inaudible to human perception, blind for
watermark extraction, and robust against signal processing/codecs.
However, there is a trade-off among these competitive requirements,
e.g., robustness is usually improved at the expense of inaudibility,
and vice versa. Therefore, how to realize desired watermarking is
still a challenging problem. This work focuses on exploring inaudi-
ble, blind, and robust speech watermarking.

There has been significant research into speech watermarking re-
cent years. A typical category of watermarking focuses on exploring
the characteristics of human auditory system (HAS) for inaudibility
[1, 2]. For instance, watermarks can be embedded into the phase
of speech based on fact that HAS is not sensitive to slight phase
modifications [3, 4]. Quantization index modulation (QIM) [5, 6]
based methods form another category of watermarking, where a lot
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of efforts have been devoted to selecting suitable features to balance
inaudibility and robustness. Spread spectrum is a well-known tech-
nique which is widely employed for robust watermarking [7, 8, 9].
Aside from these categories, hybrid watermarking [10, 11, 12] has
been verified to have superior performance in robustness since wa-
termarks are doubly embedded which enables them to be reliably ex-
tracted. Despite these achievements, many existing methods cannot
reach a balance between inaudibility and robustness. In particular,
robustness against codecs is highly desired for speech watermark-
ing while many methods are not completely robust against different
speech codecs.

A common problem in watermarking field is that many meth-
ods can extract the watermarks in ideal situations (without noise/ in-
terferences), but when there are noise/interferences in watermarked
signal, the embedded watermarks will fail to extract which leads to
weak robustness. We previously proposed two formant enhancement
based watermarking methods [13, 14]. However, their robustness
against speech codecs was not satisfactory, e.g., [13] was not robust
against any speech codecs and [14] was not robust against G.729 at
high capacities. This paper proposes a speech watermarking method
based on robust principal component analysis (RPCA) and formant
manipulations. RPCA is employed to extract the core information in
speech so that formants can be estimated correctly even under inter-
ferences caused by speech processing and codecs. Watermarks are
embedded into the formants of relatively low power by controlling
line spectral frequencies (LSFs) to maintain the speech quality. The
main contribution of this paper is that RPCA is introduced to water-
marking for the first time and the introducing of RPCA can signifi-
cantly attenuate the influence of various interferences in watermark
extraction process which improves the robustness. The effectiveness
of proposed method is demonstrated in the experiments.

2. PROPOSED METHOD

Linear Prediction (LP) is popular for separating the vocal tract and
excitation information in the source-filter model of speech produc-
tion. The LP coefficients derived from LP can provide important
information of acoustic feature, i.e., formants. Nevertheless, when
speech is smeared by interferences such as background noise and re-
verberation, the estimated LP envelope and formants will be much
distorted. As the proposed method embeds watermarks into for-
mants, it is necessary to make sure that formants could be correctly
estimated even under interferences.

In general, speech varies significantly and continuously over
time and its power concentrates on formants, thus the spectrogram
of speech has a relatively sparse structure. Based on this fact, some

2082978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



0 5 10 15 20
−1

−0.5

0

0.5

1

(a) Waveform of clean /a/

A
m

p
lit

u
d
e

Time(ms)

0 1 2 3 4 5 6 7 8 9 10
−40

−20

0

20

40

(b) Spectrum and envelope

Frequency (kHz)

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

Power spectrum

Envelope of clean /a/

Envelope of sparse component

Fig. 1. Formant estimation for /a/ with and without RPCA.

works successfully separated clean singing voice/speech from mu-
sic accompaniment and interferences using RPCA [15] with the as-
sumption that the singing voices/speech have a sparse structure and
the music accompaniment and interferences have a low-rank struc-
ture. In watermarking field, common speech processing/codecs will
unavoidably introduce interferences to speech. If we can separate
out the core information of speech from interferences to reduce their
effect, the robustness of watermarking will be improved. This paper
employs RPCA to extract the core information of speech so that for-
mant estimation could be stable and robust under these interferences.

2.1. Robust principal component analysis

RPCA as a convex problem is a matrix factorization algorithm which
is quite attractive in various application fields [16]. Given an in-
put matrix X∈Rn1×n2 , RPCA decomposes it into a sparse matrix
S∈Rn1×n2 and a low-rank matrix L∈Rn1×n2 by solving the fol-
lowing convex problem,

minimizeS,L
λ0√

max(n1, n2)
‖S‖l1 + ‖L‖∗ (1)

subject to X = S + L,

where S (punished by the l1-norm ‖ · ‖l1 , i.e., the sum of absolute
values of matrix entries) represents the sparse component of X , L
(punished by the nuclear norm ‖·‖∗, i.e., the sum of singular values)
represents the low-rank component of X , and λ0 > 0 is a trade-off
parameter to adjust the ratio between the sparse component S and
low-rank component L. As suggested in [15], λ0 = 1 is a good
choice, but this paper adjusts λ0 to a smaller value to relax the re-
strictions on S so that the main spectra of speech could be captured
in sparse component S. The inexact Augmented Lagrange Multi-
plier (ALM) method [15, 16] is used to solve the RPCA problem
and two matrices S and L can be obtained.

PRCA is operated on matrix, this paper transforms the clean/noisy
speech into a matrix in the time-frequency (T-F) domain with short-
time Fourier transform (STFT). The obtained matrix is a joint matrix
composed of a sparse matrix of core information in speech and a
low-rank matrix which contains the noise/interferences. The perfor-
mance of RPCA is verified in next subsection.
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Fig. 2. Residue analysis for clean speech.

2.2. Linear prediction analysis and formant estimation

LP analysis can provide the estimation of formants [17, 18]. A com-
mon representation of LP is expressed in Eq. (2), where p is the
LP order, ai are LP coefficients, x̂(n) is the predicted value, and
x(n− i) is the i-th previous values,

x̂(n) =

p∑
i=1

aix(n− i). (2)

The performance of formant estimation with and without RPCA
in clean and noisy/interferences conditions is verified using voiced
vowel /a/ (20 kHz, 16-bit). In RPCA, the spectrogram of speech is
computed with window size of 256. The sparse component in speech
is calculated using Eq. (1) where λ0 is fixed at 0.2 to ensure the core
information of speech is captured in sparse component. LP order
for formant estimation is 16-th. Figure 1(b) shows the LP envelope
and formant estimation results from clean /a/ and its sparse compo-
nent. The formants estimated from sparse component is quite close
to those from clean /a/, indicating that formant structure is well kept
in sparse component. In Fig. 2(a), the LP residue of sparse compo-
nent closely concentrates in a smaller numerical range than that of
clean /a/ and its histogram in Fig. 2(b) is much thinner and higher,
which means the residue of sparse component is much smaller. The
mean value (MV), standard deviation (STD), and normalized mean
value (NMV) of residues are calculated in Tab. 1 (line 2-3). We can
confirm that for clean speech, formant structure can be well kept in
sparse component.

In noisy condition, a Gaussian white noise at 20 dB is added to
clean /a/. Formants are estimated from noisy speech and its sparse
component respectively. The histogram of LP residues for noisy /a/,
its sparse component, and clean /a/ are compared in Fig. 3. The
residue of clean /a/ is the thinnest and highest and the LP residue
of sparse component of noisy /a/ is similar with clean /a/, while the
residue of noisy /a/ is much larger. The statistical data of LP residues
for noisy /a/ and its sparse component are listed in Tab. 1 (line 4-
5). It is found that when there are interferences in speech, formant
estimation from the sparse component is more accurate.

2.3. Concept of watermarking

The estimated formants are originally expressed with LP coef-
ficients. In this paper, LP coefficients are converted to LSFs
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Table 1. Statistical analysis for residue.
Conditions Conditions MV STD NMV

Clean /a/ 0.007 0.011 0.013
Sparse component 0.004 0.006 0.009

Noisy /a/ 0.637 0.788 0.041
Sparse component 0.016 0.021 0.028

[19, 20, 21] for formant manipulations as they possess several
properties: (i) LSFs are less sensitive to noise; (ii) the influences
caused by LSF deviations can be limited to local spectra, which sug-
gests that if LSFs are used to manipulate the formant for watermark
embedding, the sound distortion introduced by watermarks can be
minimized; (iii) LSFs are universal features in different speech
codecs, watermarking implemented on LSFs is possible to survive
from speech codecs to provide strong robustness. The relationship
between LSFs and formants is that one formant can be controlled
by two adjacent LSFs, and the closer two LSFs are, the sharper the
formant is. Watermarks can be embedded into speech when LSFs
are shifted for formant manipulations.

Embedding concept: Formants in low frequencies are important
for speech quaility and speech recognition, thus this paper chooses
formants in high frequencies which have relatively low power for
watermark embedding. As shown in Fig. 4(a), suppose the last two
formants of one speech frame are controlled by four LSFs, φa, φb,
φc, and φd. The bandwidth Dbc between φb and φc, and the band-
width Dcd between φc and φd can be roughly calculated using Eq.
(3) and Eq. (4), where Fs is the sampling frequency of speech signal.

Dbc = (φc − φb)/2π × Fs (3)
Dcd = (φd − φc)/2π × Fs. (4)

Watermarks are embedded by controlling the shape and power
distribution between the last two formants. To minimize the distor-
tions, formants are manipulated by shifting only one LSF, i.e., the
penultimate LSF (last LSF but one), φc. If watermark w = 0, φc is
shifted so that the bandwidth relationship between Dbc and Dcd is
fixed as Eq. (5); if watermark w = 1, the bandwidth relationship is
fixed as Eq. (6), where γ (γ>1.0) is used to control how much the
formant is manipulated.

Dbc = γ ×Dcd, w = 0 (5)
Dbc = 1/γ ×Dcd, w = 1. (6)

Extration concept: As different bandwidth relationships have
been established after embedding, watermarks w can be easily ex-
tracted by examining the relationships using Eq. (7).

w =

{
0, Dbc > Dcd

1, Dbc ≤ Dcd
(7)

3. IMPLEMENTATION OF WATERMARKING

Figure 5(a) shows the watermarking embedding scheme. (i) Original
signal, x(n), is first segmented into frames, xm(n). STFT is applied
to each frame to calculate its spectrogram. (ii) The sparse component
of spectrogram is extracted using RPCA . (iii) LP analysis is applied
to the sparse component to calculate the formants and LSFs. (iv)
Each frame will be embedded with one-bit watermark by shifting
the penultimate LSF according to Eq. (5) or Eq. (6). (v) LSFs will
be converted back to LP coefficients to calculate the modified sparse
component. (vi) The modified sparse component and low-rank com-
ponent (obtained in (ii)) will be combined together and converted to
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Fig. 3. Residue analysis for noisy speech.
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Fig. 4. Watermarking concept.

watermarked frame, ym(n), using inverse STFT (ISTFT). (vii) Fi-
nally, all watermarked frames will be connected together to construct
the watermarked signal, y(n). Figure 5(b) illustrates the watermark
extraction scheme. The first three steps are the same as those in
embedding scheme. When the LSFs are obtained from each frame,
the bandwidths of formants can be calculated. Watermarks can be
extracted using Eq. (7).

4. EVALUATIONS

The inaudibility and robustness of proposed method were evaluated
with respect to embedding capacities (the proposed method is a blind
method). All 12 speech in the ATR database (B set) (Japanese sen-
tences: 8.1-sec, 20 kHz, and 16 bits) were used as stimuli [22]. λ0

was fixed at 0.2 to attain the best result and γ was adopted as 1.75
to balance inaudibility and robustness. Embedded watermark was a
random binary sequence. Embedding capacities were set as 4, 8, 16,
32, 64, 128, 200, and 400 bps. Evaluations were also done for three
typical methods, i.e., LSB [23], DSS [24], CD [4, 25], and our previ-
ous method [14], which have separately exhibited good performance
in inaudibility, robustness, and both inaudibility and robustness. Em-
bedding capacities for these methods were 4, 8, 16, 32, 64, 128, and
256 bps according to their original implementations.

Inaudibility: Inaudibility was checked by log-spectrum distor-
tion (LSD) [26] and perceptual evaluation of speech quality (PESQ)
[27]. LSD in decibel (dB) measured the spectra distance between
original signal and watermarked signal. LSD of 1.0 dB was chosen
as the criterion and lower value indicated less distortion. PESQ in
objective difference grades (ODGs) ranged from 0.5 (very annoy-
ing) to 4.5 (imperceptible) was used to evaluate the subjective qual-
ity, 3.0 (slightly annoying) was set as the criterion and higher value
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indicated better quality. Evaluation results are plotted in Fig. 6. LSB
had the best performance among the four methods. CD could satisfy
inaudibility when embedding capacity was lower than 16 bps. DSS
could not satisfy the criteria for either LSD or PESQ. Our previous
method could satisfy the criteria for both LSD and PESQ. Neverthe-
less, the proposed method was better than CD, DSS, and our previ-
ous method, and it could satisfy inaudibility.

Robustness: Robustness was checked by Bit Detection Rate
(BDR), i.e., the ratio between correctly extracted watermarks and
embedded watermarks. BDR of 90% was set as the criterion and
higher BDR indicated stronger robustness. Robustness was first
evaluated against normal watermark extraction and speech process-
ing including re-sampling at 24 kHz and 12 kHz, re-quantization
with 24 bits and 8 bits, speech analysis/synthesis by gammatone
filter-bank (GTFB) and STFT, and signal amplifying by 2.0 times.
The BDR results are plotted in Fig. 7. It is clear that DSS performed
the best. LSB was only robust against a few kinds of these process-
ing. CD was robust against all processing except for re-quantization
with 8 bits and GTFB. The proposed method was basically robust
against all processing except for re-quantization with 8 bits. It was
also better than our previous method at high embedding capacity.

We also applied four typical speech codecs to the watermarked
speech, i.e., G.711, G723.1, G.726, and G.729. Figure 8 plots the
BDR results. LSB was not robust against any speech codec; CD
was only robust against G.711; DSS was not robust against G.723.1
and G.729. In contrast, the proposed method could survive from all
speech codecs at low embedding capacity and its robustness against
G.723.1 and G.729 was much improved than our previous method.

Discussion: This section compared the proposed method with
other four methods. The proposed method could reach a balance in
inaudibility and robustness, and its robustness was better than the
other methods. A detailed discussion on how and why LSB, DSS,
and CD performed can be found in [28]. The proposed method also
outperformed our previous method in both inaudibility and robust-
ness. Compared with the previous method, the scheme for formant
manipulations was much simpler, indicating the performance of wa-
termark extraction was more stable. Moreover, the introducing of
RPCA enabled formant estimation to be more accurate which sig-
nificantly improve the robustness of the proposed method.
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5. CONCLUSIONS
This paper proposes a watermarking method for speech signals
based on RPCA and formant manipulations. As the core information
of speech tends to have a sparse structure and the noise/interferences
have a low-rank structure, they are separable in T-F domain. RPCA
is applied in the watermarking to extract the core information so
that formants can be accurately estimated for watermark extraction
under speech processing/codecs, which improves the robustness of
proposed method. LP analysis is used to extract formants and wa-
termarks are embedded into formants by controlling LSFs. Benefit
from these considerations, the proposed method exhibites better
performance in inaudibility and robustness than the other methods.
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