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ABSTRACT

A user implemented privacy preservation mechanism is pro-
posed for the online gradient descent (OGD) algorithm. Pri-
vacy is measured through the information leakage as quan-
tified by the mutual information between the users outputs
and learners inputs. The input perturbation mechanism pro-
posed can be implemented by individual users with a space
and time complexity that is independent of the horizon T . For
the proposed mechanism, the information leakage is shown to
be bounded by the Gaussian channel capacity in the full in-
formation setting. The regret bound of the privacy preserving
learning mechanism is identical to the non private OGD with
only differing in constant factors.

Index Terms— Online machine learning, privacy, infor-
mation theory, convex optimization, gradient descent.

1. INTRODUCTION

In this paper, we study privacy leakage in an emerging field of
study: online machine learning. The goal of online learning is
to make a sequence of accurate predictions given knowledge
of the correct answer to previous prediction tasks and possi-
bly additional available information [1]. Big data applications
such as targeted advertising and online ranking has burgeoned
the interest in developing efficient online learning algorithms.
It has also been shown that online learning techniques can be
used to obtain results for online posted price mechanisms and
online auctions [2].

In practice, the learner is usually the service provider who
gathers large amounts of personal information about the users
of the service, and would in all likelihood contain individual
data that is private or sensitive. Although individuals are will-
ing to share their data, they are not expecting the disclosure of
identities [3]. For example, a navigation app user wants to get
current traffic condition model without his/her position being
perfectly shared. In fact, the goal of learning is to uncover
“relationships” or “trends” from historical data, which might
be possible to be separated from the information of individual
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identities [3]. The purpose of this work is to propose a user
driven privatization mechanism that allows the learner to in-
fer the desired trends and patterns without compromising an
individual users privacy.

It has been shown that many online learning problems and
algorithms can be analyzed based on the online convex opti-
mization model. In online convex optimization (OCO), the
hypothesis set and the loss functions are forced to be convex
to obtain stronger learning bounds. The model is based on a
convex set and a sequence of convex cost functions.

Due to the popularity of OCO, considerable efforts have
been devoted to designing differential private algorithms for
the OCO problem [4, 5, 6]. Most of these works consider
adversary who observes the output of the online learning al-
gorithm and extracts sensitive data from users, and a differ-
entially private algorithm guarantees that the statistics from
observation will not deviate too much if at most one individ-
ual alters his input data [4].

In this work, we consider the problem from another per-
spective — we consider the situation where the adversary can
observe the input data of online learning system, and we use
mutual information as a measure of the information leaked
from the user to the adversary [7]. We note that this approach,
even in the absence of an explicit adversary, protects the users
sensitive data from the service provider running the learning
algorithm.

In this work, we modify the online gradient descent al-
gorithm and provide a mutual-information-private version
where we introduce an encryption layer to encrypt data
through an additive noise mechanism. The scheme we pro-
pose can be implemented by each individual user with a
space and time complexity that is independent of the learning
horizon. We propose solutions for both the full information
setting and the bandit setting.

Related work
There are several approaches that ensure privacy in online
learning [4, 5, 6]. In [4], the authors provide a differentially
private OCO method. This algorithm is generated by adding
i.i.d. Gaussian noise into the output of non-private OCO al-
gorithm, and taking a projection in case the output is out of
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the convex set. The authors convert two popular OCO algo-
rithms (Implicit Gradient Descent and Generalized Infinitesi-
mal Gradient Ascent) into corresponding differentially private
algorithms while guaranteeing O(

√
T ) regret bounds. In [5],

the authors consider online prediction from expert advice in
a situation where each expert observes its own loss at each
time while the loss cannot be disclosed to others. The regret
bound (performance) of their proposed exponential weighting
scheme is the same or almost the same as the well-known ex-
ponential weighting scheme in the full information model. In
[6], the authors consider online learning with distributed data
sources. The autonomous learners update local parameters
based on local data sources and periodically exchange infor-
mation with a small subset of neighbors in a communication
network. This approach limits the power of the learner and
the regret bound for strongly convex functions is still sublin-
ear. A gradient descent based additive noise mechanism has
been studied in the context of deep learning [8].

However, these encryption methods are implemented
from the learner’s side — the data is encrypted inside or after
the online learning algorithm. Although we can guarantee
differential privacy if the adversary has only the access to the
output of learning system, we cannot claim privacy if the ad-
versary has the access to the input of learning system, or even
the learner itself is malicious. The method we propose is to
encrypt the data from users’ side, which is a very conservative
way to protect sensitive information.

2. MUTUAL-INFORMATION-PRIVATE ONLINE
GRADIENT DESCENT ALGORITHM

We will first describe briefly the online convex optimization
(OCO) model. This model has potential to be highly applica-
ble since many machine learning optimization problems are
indeed convex [9]. In this model, the data from user is repre-
sented by a convex cost function and the learner’s objective is
to minimize the total cost by predicting appropriate parame-
ters.

Definition 1 (Online Convex Optimization). Consider an
online learning system that receives a stream of functions
(f1, f2, · · · , fT ) and each ft : S → R is a convex cost
function representing data from one individual. The sys-
tem is required to output a sequence of parameter estimates
(w1, w2, · · · , wT ) with wt ∈ S ⊂ Rd that minimizes the
total errors

∑T
t=1 ft(wt). Due to causality, for every t, the

algorithm computes wt based only on (f1, f2, · · · , ft−1). We
seek an algorithm A that minimize the regret defined by

RegretT (A) =
T∑

t=1

ft(wt)−min
w∈S

ft(w)

We consider situations where 1) the input functions
(f1, f2, · · · , ft−1) are L−Lipschitz continuous, and 2) the

hypothesis space S is bounded w.r.t. l2−norm. Under these
restrictions, the OCO problem can be solved by the online
gradient descent (OGD) algorithm [10].

The OGD algorithm only takes the sub-gradient zt ∈
∂ft(wt) as input. It is noticeable that user individual infor-
mation may be inferred if an accurate sub-gradient is provided
to the learner. We use linear regression as an example, where
the learner wants to predict yt by a feature vector xt with a
linear function 〈wt, xt〉, and the loss function has the form
ft(wt) = |〈wt, xt〉 − yt|. In this case, the sub-gradient will
be zt = ±xt which reveals the feature vector xt almost
completely.

In light of this, we propose a privacy-preserving encryp-
tion in which each individual user adds independent noise to
the sub-gradient and sends the modified sub-gradient value z̃t
to the learner. Or equivalently, the user can generate a mod-
ified cost function f̃t : S → R based on the perturbed sub-
gradient value. The algorithm is shown in Algorithm 1 and
Fig. 1.

Algorithm 1 Mutual-information-private OGD
1: Encryption layer:
2: Receive wt from the learner
3: Pick a sub-gradient zt ∈ ∂ft(wt)
4: Output z̃t = zt+vt to the learner, where vt ∼ N (0, σ2I)

is independent generated Gaussian noise
5: Learner:
6: Receive z̃t from the encryption layer
7: Update θt+1 = θt − z̃t, (initialize θ1 = 0)
8: Predict wt+1 = argminw∈S ‖w − ηθt+1‖

w1w1 w2w2

f1f1

w3w3
AA AA

User

Learner

z̃1̃z1

f2f2

z̃2̃z2
Encryption

f2(w2)f2(w2)Cost Costf1(w1)f1(w1)

Fig. 1. Mutual-information-private OGD algorithm.

By simply adding noise into the sub-gradient before send-
ing the cost function to the learner, we guarantee that the in-
formation leakage of individual user is upper-bounded when
measured by mutual information. In fact, the additive noise
results in a Gaussian channel between user and learner, which
restricts the information flow by its channel capacity.

Theorem 1 (Privacy Guarantee). The noise adding mecha-
nism in Algorithm 1 is C−mutual-information private. i.e.,
I(fk; z̃k) < C for every k, where C = d

2 log(1 +
L2

dσ2 )
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Proof. Since ft → zt → z̃t forms a Markov chain, by the
data processing theorem, it suffices to show that I(zt; z̃t) <
C. Since ft is L-Lipschitz w.r.t. norm ‖·‖2, we have ‖zt‖2 ≤
L, that is, the power of zt is bounded. Since E ‖zt‖22 ≤ L2

and zt → z̃t is a Gaussian channel, we have the result.

Now we analyze the learning performance of this algo-
rithm given the learner is running a OGD algorithm. Since
randomness is introduced in the algorithm, it is reasonable
to use the average regret as a measure of performance (see
Definition 2). It turns out that OGD algorithm is resistant to
independent zero-mean noise-adding, we can show that the
following regret is still sub-linear to the time horizon T . In
fact, the regret is bounded by B

√
(L2 + dσ2)T while the

non-private OGD algorithm has a regret bound ofBL
√
T [1].

Therefore, this private algorithm has a similar regret bound
O(
√
T ) as the non-private version with an increment on con-

stant factors.

Definition 2. In a randomized algorithm A, the regret is de-
fined as

Regret(A) = max
u∈S

E

{
T∑

t=1

[ft(wt)− ft(u)]
}

(1)

where u ∈ S is any fixed parameter in hypothesis space S
and the expectation is taking with respect to the randomness
of {vk}Tk=1.

Theorem 2 (Regret Guarantee). LetA1 be Algorithm 1, ft is
L-Lipschitz continuous for every t and maxu∈S ‖u‖2 ≤ B.
Then Regret(A1) is sub-linear to T . Specifically,

Regret(A1) ≤
B2

2η
+
η

2
T (L2 + dσ2)

In particular, by setting η = B/
√

(L2 + dσ2)T we obtain
the bound Regret(A1) ≤ B

√
(L2 + dσ2)T .

Proof. Starting from the definition of sub-gradient, since zt ∈
∂ft(wt), for every u ∈ S we have

ft(wt)− ft(u) ≤ 〈wt − u, zt〉 (2)

Note that the noise vt is zero-mean and independently
generated, by the law of total probability we have

E [〈wt − u, zt〉] = E [〈wt − u, z̃t〉] (3)

Combining (2), (3) and summing over time we get

E

{
T∑

t=1

[ft(wt)− ft(u)]
}
≤ E

[
T∑

t=1

〈wt − u, z̃t〉
]

(4)

The sequence {wt}Tt=1 is the output of OGD algorithm run-
ning on the input sequence {z̃t}Tt=1. Therefore (see Eq. 2.15
in [1]),

T∑

t=1

〈wt − u, z̃t〉 ≤
1

2η
‖u‖22 +

η

2

T∑

t=1

‖z̃t‖22 (5)

Since z̃t = zt+ vt where zt is a sub-gradient of L−Lipschitz
function, vt is independent of zt and E ‖vt‖22 ≤ dσ2, the ex-
pectation of last term is bounded by

E

[
η

2

T∑

t=1

‖z̃t‖22

]
≤ η

2

T∑

t=1

[
E ‖zt‖22 + E ‖vt‖22

]

≤ ηT

2
(L2 + dσ2) (6)

By (1), (4)-(6) and ‖u‖2 ≤ B the proof is complete.

3. EXTENSION TO BANDIT SETTING

The bandit setting is useful in the situation where the learner
(or even the user) only knows the value of the loss function but
he doesn’t know the value of the loss function at other points.
We can easily extend the additive noise method in Algorithm
1 to bandit setting, where the encryption layer consists only
of the value of ft(·) at each step t.

We adapt our approach in Section 2 to the Bandit Online
Gradient Descent (OGD) algorithm [11]. In our approach,
the encryption layer computes an estimate of the gradient and
adds Gaussian noise at each step. Note that the encryption
layer can be implemented at the user’s side since no input
from other individual is required in this algorithm. We present
our approach in Algorithm 2. As will be shown in Theo-
rems 3 and 4, this algorithm has a comparable privacy and
regret guarantee as Algorithm 1 (the full information setting).
Furthermore, the regret bound achievable by the algorithm
O(T 3/4) is also identical to the non-private version with only
constant factors differing in the proof.

w1w1 w2w2

f1f1

w3w3
AA AA

User

Learner

z̃1̃z1

f2f2

z̃2̃z2

Encryption

φ2φ2Cost Costφ1φ1

φ1φ1w1 + δe1w1 + δe1 w2 + δe2w2 + δe2 φ2φ2

Fig. 2. Mutual-information-private OGD algorithm — Bandit
setting.

Theorem 3 (Privacy Guarantee). LetF = maxu∈S,t≥1 ft(u).
If F < ∞, the noise adding mechanism in Algorithm 2 is
C−mutual information private. i.e., I(ft; z̃t) < C for every
t, where C = d

2 log(1 +
d(F/δ+L)2

σ2 )

Proof. Since ft → zt → z̃t forms a Markov chain, by the
data processing theorem, it suffices to show that I(zt; z̃t) <
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Algorithm 2 Mutual-information-private OGD: Bandit set-
ting

1: Encryption layer:
2: Receive wt from the learner
3: Pick et ∼ Usp, where Usp is the uniform distribution over

the unit sphere {u : ‖u‖22 = 1}.
4: Send wt + δet to the user
5: Receive cost value φt = ft(wt + δet) from the user
6: zt =

d
δφtet

7: Output z̃t = zt+vt to the learner, where vt ∼ N (0, σ2I)
is independent generated Gaussian noise

8: Learner:
9: Receive z̃t from the encryption layer

10: Update θt+1 = θt − z̃t, (initialize θ1 = 0)
11: Predict wt+1 = argminw∈S ‖w − ηθt+1‖

C. Since ft is L-Lipschitz w.r.t. norm ‖·‖2, we have

E ‖zt‖22 =
d2

δ2
E ‖ft(wt + δet)‖22 ≤

d2

δ2
E ‖ft(wt) + Lδ‖22

=
d2

δ2
(F + Lδ)2 = d2(F/δ + L)2 (7)

That is the power of zt is bounded by d2(F/δ + L)2. Since
zt → z̃t is a Gaussian channel, we have the result.

Theorem 4 (Regret Guarantee). LetA2 be Algorithm 2, ft is
L-Lipschitz continuous for every t, F = maxu∈S,t≥1 ft(u) <
∞ and maxu∈S ‖u‖2 ≤ B. Then Regret(A2) is sub-linear
to T . Specifically,

Regret(A2) ≤
B2

2η
+
η

2
T (d2(F/η + L)2 + dσ2) + 3TLδ

In particular, if we set η ∼ T−3/4 and δ ∼ T−1/4, the regret
is bounded by O(T 3/4).

Proof. Define f̂t(w) = Eet∼Usp
[ft(w + δet)]. By the

L−Lipschitzness of ft, two function ft and f̂t(w) are “close”.

|f̂t(w)− ft(w)| ≤ max
e
|ft(w + δe)− ft(w)| ≤ Lδ

Regret(A2) = E

{
T∑

t=1

[ft(wt + δet)− ft(u)]
}

≤ E

{
T∑

t=1

[f̂t(wt)− f̂t(u) + 3Lδ]

}
(8)

Moreover, f̂t is differentiable and zt is the gradient of f̂t at
point wt (see [11] Lemma 1). Therefore

f̂t(wt)− f̂t(u) ≤ 〈wt − u, zt〉
Follow the same procedure in the proof of Theorem 2, we
have

E

{
T∑

t=1

[f̂t(wt)− f̂t(u)]
}
≤ 1

2η
‖u‖22 +

η

2

T∑

t=1

E ‖z̃t‖22 (9)

Since z̃t = zt + vt, the variance of zt is bounded by (7),
vt is independent of zt and E ‖vt‖22 ≤ dσ2, the last term is
bounded by

η

2

T∑

t=1

E ‖z̃t‖22 ≤
η

2
T (d2(F/η + L)2 + dσ2) (10)

By combining (8)-(10) and ‖u‖2 ≤ B, the proof is complete.

4. NUMERICAL RESULTS

We present numerical results to illustrate the learning perfor-
mance of mutual-information-private OGD algorithms for a
simple linear regression problem. Fig. 3 plots the regret of
algorithm 1 and its non-private version (σ = 0). Here we set
d = L = B = σ2 = 1 and the encrypted OGD is 1

2 log 2-
mutual-information-private. The performance-privacy trade-
off for full information setting is illustrated in Fig. 4, where
we set d = B = 1 and T = 25, which provides the ROC
curve of Algorithm 1.
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Fig. 3. Performance-privacy trade-off for Algorithm 1.
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Fig. 4. Performance-privacy trade-off for Algorithm 1.

5. CONCLUSION

In this work, we proposed an additive noise mechanism for
the online gradient descent (OGD) algorithm for both full-
information setting and bandit setting. It is shown that our
private preserving OGD provides a conservative way to pro-
tect users’ data. The user’s leaked information is bounded by
the channel capacity of Gaussian channel while the regret of
the learning system is sub-linear to the time horizon T .
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