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ABSTRACT

Deep learning has been used in various applications to
achieve outstanding results. Yet, massive data collection re-
quired for deep learning presents obvious privacy issues. To
this end, the popular privacy framework called differential
privacy has been recently applied to deep learning to protect
data from the adversary. In this paper, we derive the privacy
cost of differentially private deep learning. Compared with
the recent result of Abadi et al. [1] in ACM CCS 2016, our
expression for the privacy cost is tighter (i.e., giving a lower
cost), applicable to a broader set of parameters, and more ef-
ficient to compute.

Index Terms — Differential privacy, deep learning,
privacy cost, Gaussian mechanism.

1. INTRODUCTION

Deep learning has recently become hugely popular [1–4]. Its
success is due to a combination of recent algorithmic break-
throughs, increasingly powerful computers, and access to sig-
nificant amounts of data. However, massive data collection
required for deep learning presents obvious privacy issues.

Differential privacy by Dwork et al. [5] is a robust pri-
vacy standard that has been used in a range of data analy-
sis tasks, since it provides a rigorous foundation for defin-
ing and preserving privacy. Differential privacy has received
considerable attention in the literature [1, 6–8]. Apple in-
corporated differential privacy into its mobile operating sys-
tem iOS 10 [9]. Google implemented a differentially private
tool called RAPPOR in the Chrome browser to collect infor-
mation about clients [10]. Intuitively, a randomized mecha-
nism achieving (ε, δ)-differential privacy means that except
with a (typically small) probability δ, altering a record in
a database cannot change the probability that an output is
seen by more than a multiplicative factor eε. Formally, for
x and x′ iterating through all pairs of neighboring databases
(i.e., databases that differ by one record), and for Y iterat-
ing through all subsets of the output range of some mecha-
nism Y , the mechanism Y achieves (ε, δ)-differential privacy
if P [Y (x) ∈ Y] ≤ eεP [Y (x′) ∈ Y] + δ, where P [·] denotes

the probability, and the probability space is over the coin flips
of the mechanism Y . If δ = 0, (ε, δ)-differential privacy
becomes ε-differential privacy. In several studies [11–13],
(ε, δ)-differential privacy and ε-differential privacy are also
referred to as approximate differential privacy and pure dif-
ferential privacy, respectively.

Abadi et al. [1] recently applied (ε, δ)-differential privacy
to deep learning techniques based on stochastic gradient de-
scent, where the Gaussian noise is added to the gradient for
achieving differential privacy.

Improvements of this paper over Abadi et al. [1]. We
derive the privacy cost of differentially private deep learning.
Compared with the result of Abadi et al. [1], our expression
for the privacy cost is tighter (i.e., giving a lower cost), ap-
plicable to a broader set of parameters, and more efficient to
compute. Specifically, the improvements are as follows:

1. Our method of computing the privacy cost applies to all pa-
rameters, whereas [1]’s approach does not apply to all noise
amounts. In particular, with σ denoting the noise amount
and q being the sampling probability ([1] constructs a mini-
batch used in stochastic gradient descent by sampling each
example with probability q), [1]’s approach does not work
for σ < 1 (i.e., small σ) or σ ≥ 1/q (i.e., large σ).

2. We give a tighter privacy cost than [1]. For example,
for a set of parameters discussed after Theorem 1 of [1],
Abadi et al. [1] give a privacy cost of 1.26, while our ex-
pression induces 1.136 (i.e., 10% improvement). The im-
provement will be further higher for other set of parameters
since (i) our privacy cost is tight for any set of parameters,
and (ii) the closer σ is to either 1 or 1/q, the loose [1]’s
privacy cost is (note that [1]’s result is applicable to only
1 ≤ σ < 1/q.

3. Our expression is exact and does not involve asymptotics.
In contrast, much of [1]’s analysis is either asymptotic
(e.g., Lemma 3 on Page 12 in the full version of [1] at
https://arxiv.org/abs/1607.00133 ) or involves unspecified
constants (e.g., Theorem 1 on Page 4 of [1]). Results with-
out exact expressions are not quite useful to evaluate how
large the privacy cost is.
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4. Our expression of privacy cost is more efficient to com-
pute. Note that Theorem 1 of [1] is not used to evaluate the
privacy cost in [1]’s experiments due to the following rea-
son: even if the constants in Theorem 1 of [1] can be given,
the privacy cost computed in this way will be quite loose.
Instead, [1] proposes a moment accountant method to com-
pute the privacy cost without giving an exact expression of
the privacy cost. However, the computation is inefficient
and complex. Specifically, [1]’s computation of the pri-
vacy cost lets a parameter λ iterate through a set of values.
In the experiments of [1], λ is set as an integer from 1 to
32 so that similar computations have to be invoked for 32
times. In contrast, our approach calculates the privacy cost
efficiently without invoking similar computations multiple
times.

5. Finally, we also consider the general setting of heteroge-
neous sampling probabilities, gradient clipping bounds and
noise amounts, whereas [1] studies only the homogeneous
case.

Roadmap. The rest of the paper is organized as follows.
Section 2 introduces some preliminaries. We present privacy-
cost analysis of differentially private deep learning in Sec-
tions 3 and 4, where Section 3 considers the case of homo-
geneous sampling rates, gradient clipping bounds and noise
amounts, and Section 4 considers the case of heterogeneous
sampling rates, gradient clipping bounds and noise amounts.
Section 6 surveys related work, and Section 7 concludes the
paper.

2. PRELIMINARIES

2.1. Deep Learning

Deep learning extracts complex features from high-dimensional
data and uses them to build a model that relates inputs to out-
puts (e.g., classes). Deep learning architectures are often
constructed as multi-layer networks where more abstract
features are computed as nonlinear functions of lower-level
features. In a typical multi-layer network, each neuron re-
ceives the output of the neurons in the previous layer plus
a bias signal from a special neuron that emits one. It then
computes a weighted average of its inputs, referred to as the
total input. The output of the neuron is computed by applying
a nonlinear activation function to the total input value. The
output vector of neurons in layer k is ak = f(Wkak−1),
where f is an activation function and Wk is the weight matrix
that determines the contribution of each input signal. If the
neural network is applied to classifying input data into a finite
number of classes, the activation function in the last layer
is usually a softmax function f(zj) = ezj/(

∑
k e

zk), ∀j.
In this case, the output of each neuron j in the last layer
is the score or probability that the input belongs to class j.
The main challenge in deep learning is to automatically learn

from training data the values of the weight parameters that
maximize the learning accuracy.

Learning network parameters using gradient descent.
Learning the parameters of a neural network is a nonlinear op-
timization problem. The algorithms to solve this problem are
often variants of gradient descent. After beginning at a ran-
dom set of parameters, gradient descent at each step computes
the gradient of the nonlinear function being optimized and up-
dates the parameters in order to decrease the gradient. This
process continues iteratively until the algorithm converges to
a local optimum.

In a neural network, the gradient of each weight parame-
ter is computed via feed-forward and back-propagation pro-
cedures. Feed-forward sequentially computes the output of
the network and calculates the error defined as the difference
between this output and the true value of the function. Back-
propagation propagates this error back through the network
to compute the contribution of each neuron to the total error.
The gradients of individual parameters are computed accord-
ing to the neurons’ activation values and their contribution to
the error.

Stochastic gradient descent. A naive approach is to av-
erage the gradients of the parameters over allN data samples.
However, this algorithm is inefficient, especially if the dataset
is large. A better alternative known as stochastic gradient de-
scent (SGD) computes the gradient over a small subset (called
minibatch) of the whole dataset.

Let θ be the vector of all parameters in a neural network.
Let L be the loss function which denotes the difference be-
tween the true value of the objective function and the com-
puted output of the network. L is often based on `2 norm
or cross entropy. The back-propagation algorithm calculates
the partial derivative of L with respect to each parameter in
θ and updates the parameter in order to reduce its gradient.
In [1], at step t, a minibatch Lt is constructed by sampling
each example with a certain probability q. Then the update
rule of SGD (without privacy) for a parameter θj is θj ←
θj − η · 1

|Lt|
∑
xi∈Lt

∂L
∂θj

, where η denotes the learning rate.
For simplicity, [1] replaces the above 1

|Lt| by its expectation
qN ( [1] uses the notation L to represent qN ). When differ-
ential privacy is incorporated, the gradient ∂L

∂θj
is added with

certain amount of Gaussian noise before being used in the
above SGD update.

2.2. Differential Privacy

Among various mechanisms to achieve (ε, δ)-differential pri-
vacy, the Gaussian mechanism for real-valued queries by
Dwork and Roth [14] has received much attention, where a
certain amount of Gaussian noise is added independently to
each dimension of the query result.

Recall that differential privacy intuitively means that the
adversary cannot determine whether the randomized output
comes from a database x or its neighboring database x′ that
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Figure 1: Differentially private deep learning (DPDL) algorithms HeterogeneousDPDL and HomogeneousDPDL, where
the former considers heterogeneous sampling probabilities, gradient clipping bounds and noise amounts, and the latter considers
the homogeneous setting.

differs from x by one record. In unbounded differential pri-
vacy, the size of two neighboring databases differ by one; i.e.,
one record is in one database but not in the other database. In
bounded differential privacy, two neighboring databases have
the same size N , and have different records at only one of the
N positions. The same as Abadi et al. [1], we consider un-
bounded differential privacy in this paper. Yet, it is straight-
forward to extend our results to bounded differential privacy.

2.3. Differentially Private Deep Learning (DPDL)

Abadi et al. [1] recently applied (ε, δ)-differential privacy
to deep learning techniques based on stochastic gradient de-
scent, where the Gaussian mechanism is used for adding noise
to the gradient. Based on [1], we consider the differentially
private deep learning (DPDL) algorithm with heterogeneous
sampling probabilities, gradient clipping bounds and noise
amounts, and call the algorithm HeterogeneousDPDL.
We refer to the homogeneous case studied by [1] as
HomogeneousDPDL. Figure 1 presents the details of
HeterogeneousDPDL and HomogeneousDPDL.

3. PRIVACY-COST ANALYSIS OF
DIFFERENTIALLY PRIVATE DEEP LEARNING
UNDER HOMOGENEOUS SAMPLING RATES,
GRADIENT CLIPPING BOUNDS AND NOISE

AMOUNTS

Theorem 1 below analyzes the privacy cost of differentially
private deep learning under homogeneous sampling rates,
gradient clipping bounds and noise amounts.

Theorem 1. For a query Q on a database x, suppose that
adding a Gaussian noise with standard deviation σQ to

the true query result Q(x) achieves (εQ, δQ)-differential
privacy, where ε is given by f(∆Q/σQ, δQ) for ∆Q be-
ing the `2-sensitivity of query Q (such function f will be
given in Theorem 2 on Page 4). Then with ∆ denoting the
`2-sensitivity of gt := 1

qN

∑
i∈Lt

gt(xi) in Line 8 of the
HomogeneousDPDL algorithm in Figure 1 on Page 3 (i.e.,
∆ := C

qN ), the HomogeneousDPDL algorithm achieves
(ε, δ)-differential privacy for

ε = f

(
∆

/
σ

q
√
T
, δ

)
. (1)

Also, if we define function ∆Q/σQ = g(εQ, δQ) such that
εQ = f(∆Q/σQ, δQ) ⇐⇒ ∆Q/σQ = g(εQ, δQ). Then (1)
can also be written as

∆

/
σ

q
√
T

= g(ε, δ). (2)

We prove Theorem 1 in Appendix B of the full ver-
sion [15].

From (1), the privacy cost of the HomogeneousDPDL
algorithm is the same as that of adding a Gaussian noise with
standard deviation σ

q
√
T

to the true result of a query with `2-
sensitivity ∆ (or adding a Gaussian noise with standard devia-
tion 1 to the true result of a query with `2-sensitivity ∆

/
σ

q
√
T

).
In addition, it follows from (1) that if we fix the privacy cost
of the HomogeneousDPDL algorithm and the `2-sensitivity
∆, the resulting σ scales with q and

√
T .

We derive the above function f in Theorem 3 on Page 3.
Substituting the expression of function f into (1), the privacy
cost ε of the HomogeneousDPDL algorithm is

ε =
q2∆2T

2σ2
+
q∆
√

2T × erfc−1(δ)

σ
, (3)
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where erfc−1() is the inverse of the complementary error
function; i.e., y being erfc−1(x) satisfies 2√

π

∫∞
y
e−t

2

dt = x.
Note that εQ = f(∆Q/σQ, δQ)⇐⇒∆Q/σQ = g(εQ, δQ).

In Theorem 3 on Page 3, after giving the function f , we also
present the corresponding function g. Applying the expres-
sion of function g into (2), we have

σ = ε−1q∆
√
T ×

(√[
erfc−1(δ)

]2
+ ε + erfc−1(δ)

)/√
2.

4. PRIVACY-COST ANALYSIS OF
DIFFERENTIALLY PRIVATE DEEP LEARNING
UNDER HETEROGENEOUS SAMPLING RATES,

GRADIENT CLIPPING BOUNDS AND NOISE
AMOUNTS

Theorem 2 below analyzes the privacy cost of differentially
private deep learning under heterogeneous sampling rates,
gradient clipping bounds and noise amounts.

Theorem 2. For a query Q on a database x, suppose that
adding a Gaussian noise with standard deviation σQ to the
true query result Q(x) achieves (εQ, δQ)-differential pri-
vacy, where ε is given by f(∆Q/σQ, δQ) for ∆Q being
the `2-sensitivity of query Q (such function f will be given
in Theorem 2 on Page 4). Then with ∆t denoting the `2-
sensitivity of gt := 1

qtN

∑
i∈Lt

gt(xi) in Line 8 of the
HeterogeneousDPDL algorithm in Figure 1 on Page 3
(i.e., ∆t := Ct

qtN
), the HeterogeneousDPDL algorithm

achieves (ε, δ)-differential privacy for

ε = f

(√√√√ T∑
t=1

qt2∆t
2

σt2
, δ

)
. (4)

Also, if we define function ∆Q/σQ = g(εQ, δQ) such that
εQ = f(∆Q/σQ, δQ) ⇐⇒ ∆Q/σQ = g(εQ, δQ). Then (4)
can also be written as√√√√ T∑

t=1

qt2∆t
2

σt2
= g(ε, δ). (5)

We prove Theorem 2 in Appendix C of the full ver-
sion [15].

From (4), the privacy cost of the HeterogeneousDPDL
algorithm is the same as that of adding a Gaussian noise with
standard deviation 1 to the true result of a query Q with `2-

sensitivity
√∑T

t=1
qt2∆t

2

σt
2 .

We derive the above function f in Theorem 3 on Page 3.
Substituting the expression of function f into (4), the privacy
cost ε of the HeterogeneousDPDL algorithm is

ε =
1

2

T∑
t=1

qt
2∆t

2

σt2
+ erfc−1(δ)×

√√√√2

T∑
t=1

qt2∆t
2

σt2
, (6)

where erfc−1() is the inverse of the complementary error
function.

5. REFINING THE GAUSSIAN MECHANISM OF
DWORK AND ROTH [14] FOR DIFFERENTIAL

PRIVACY

The Gaussian mechanism of Dwork and Roth [14] works for
only 0 < ε ≤ 1 and 0 < δ < 0.41 as explained in Lemma 1 of
our recent work [16]. Theorem 3 below presents a Gaussian
mechanism, which works for any ε > 0 and any 0 < δ < 1.

Theorem 3. For a query Q on a database x, suppose that
adding a Gaussian noise with standard deviation σ to the true
query result Q(x) achieves (ε, δ)-differential privacy, where
∆ is the `2-sensitivity of query Q. Then ε can be given by
f(∆/σ, δ) for some function f , and ∆/σ can be given by
g(ε, δ) for some function g. Then f and g can be

f(∆/σ, δ) =
∆2

2σ2
+
√

2× erfc−1(δ)× ∆

σ
, and (7)

g(ε, δ) = ε−1 ×
(√[

erfc−1(δ)
]2

+ ε + erfc−1(δ)

)/√
2.

(8)

We establish Theorem 3 as follows. From Mechanism 2
of our recent work [16], we can set g(ε, δ) according to (8),
which further induces f(∆/σ, δ) in (7). In the appendices of
the full version [15], we use Theorem 3 to show Theorem 2,
which is further used to prove Theorem 1.

6. RELATED WORK

Shokri and Shmatikov [2] first applies differential privacy to
deep learning, but the privacy cost is too high. Abadi et al. [1]
improves [2] by reducing the privacy cost in differentially
private deep learning. They propose the moment accoun-
tant method to compute the privacy cost, while we present
a better approach in this paper. Compared with [1], our ap-
proach presents a tighter result, applies to more general pa-
rameters, and is more efficient. As in [2], Zhang et al. [3] and
Chase et al. [4] present systems for privacy-preserving multi-
party deep learning. Hitaj et al. [17] present information leak-
age attacks in multiparty deep learning. Differential privacy
has also been incorporated into machine learning algorithms
other than deep learning. These studies include differentially
private expectation maximization [18], differentially private
K-nearest neighbors classification [19], and differentially pri-
vate support vector machines [20].

7. CONCLUSION

In this paper, we derive the privacy cost of differentially
private deep learning. Compared with the recent result of
Abadi et al. [1], our expression for the privacy cost is tighter
(i.e., giving a lower cost), applicable to a broader set of
parameters, and more efficient to compute.
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