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ABSTRACT

This paper deals with electroencephalography (EEG)-based
biometric identification, using a motor imagery task, specif-
ically performing imaginary arms and legs movements.
Deep learning methods such as convolutional neural network
(CNN) is used for automatic discriminative feature extraction
and person identification. An extensive set of experimental
tests, performed on a large database comprising EEG data
collected from 40 subjects over two different sessions taken
at a week distance, shows the existence of repeatable discrim-
inative characteristics in individuals’ brain signals.

Index Terms— Electroencephalography, Motor imagery,
Convolutional neural network.

1. INTRODUCTION

The availability of automatic biometric recognition systems,
able to measure unique physical and behavioral characteris-
tics of an individual to verify his identity, is of utterly im-
portance for many practical applications. Such need has fos-
tered the current widespread usage of several biometric traits
such as fingerprint, iris, and face just to cite a few. How-
ever, these traits are often vulnerable to relevant issues,im-
plying the possibility of being forged or used for unethical
purposes [1]. The design of innovative biometric frameworks,
based on either protected architectures [2] or novel secure
identifiers [3], is therefore a highly prominent topic. In this re-
gard, brain signals have recently attracted the attention of the
scientific community, on the basis of the postulated assump-
tion that our brain possesses peculiar subject-specific proper-
ties. It is in fact worth remarking that brain activity cannot be
covertly sensed without subjects’ cooperation, is much harder
to be forged than traditional biometrics, and inherently guar-
antees liveness detection [4, 5]. Among the different modali-
ties that can be used to sense brain’s activity for people recog-
nition, electroencephalography (EEG) has received most of
researchers’ interest, since it permits collecting brain infor-
mation using portable and relatively inexpensive devices,a
notable advantage to raise the adoption of such trait in practi-
cal biometric systems [6]. EEG signals are generated by the
synchronous firing of specific spatially-aligned neurons ofthe
cortex, i.e., pyramidal neurons, and can be measured as volt-
age differences by metal electrodes placed on the head scalp

surface. The characteristics of the collected data depend on
the specific acquisition protocol employed to elicit a given
subject’s behavior. Different task-related responses, typically
expressed in form of small time-locked changes in the elec-
trical activity of the brain, can in fact be obtained using vari-
ous stimulation paradigms involving sensory or cognitive au-
dio/video stimuli.

The present research work specifically exploits EEG sig-
nals elicited during motor imagery (MI) tasks for automatic
biometric identification. In more detail, MI refers to a specific
cognitive process during which a subject imagines to perform
arms or legs movements without actually performing them.
An imagined movement requires a conscious activation of
specific brain regions involved in movement preparation and
execution, typically accompanied by a voluntary prevention
of the actual movement [7]. It propagates spontaneous time-
locked brain signals from the visual cortex to the subjects’
scalp, where they can be recorded through EEG. Previous re-
searches show that motor imagery is a suitable technique for
the design of brain computer interfaces (BCI), helping dis-
abled people communicate and control devices [8]. It is how-
ever worth remarking that eliciting MI-based EEG signals re-
quires high alertness and willingness of the involved subject,
since several imaginary movements have to be collected to
provide information useful for recognition purposes. More-
over, recorded data can also get contaminated by eye-blinking
artifacts and noise. Hence, extracting discriminative features
from the acquired data is a not-trivial task, difficult to be per-
formed through manual or simplistic approaches. In this con-
tribution, we exploit the properties of deep learning methods
such as convolutional neural networks (CNN) to automati-
cally extract subject-specific features, and classify themfor
people identification purposes.

2. MOTOR IMAGERY FOR EEG BIOMETRICS

A brief summary of the state-of-the-art works using MI-
elicited EEG signals for biometric recognition is providedin
Table 1. In [8], authors have exploited MI EEG data captured
through six channels from three subjects, elicited to perform
hands, feet and tongue movements during a single acqui-
sition session. Auto-regressive (AR) and moving average
(ARMA) coefficients have been used for feature extraction,
while classification has been performed through multi-layer
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Table 1. Overview of state-of-the-art EEG based biometric systemsbased on the use of MI tasks.

Paper Users Channels Type of Task Features Classifier Performance Sessions

Hu [8] 3 6 (C3,C4,P3,P4,O1,O2) Left & right hand, foot, tongue AR/ARMA coefficient Multi-layer BP-NN CRR=81.9− 83.9% 1

Xiao et al. [9] 3 60 Left & right hand, foot, tongue Fisher distance BP-NN CRR=80% 1

Marcelet al. [10] 9 8 (centro-parietal) Left & right hand Power spectral density GMM HTER=7.1% 3

Tsuruet al. [11] 9 4 (Fz,C3,C4,Pz) Left & right hand, foot, tongue Cepstral Values Mahalanobis EER=0.17% 2

Yanget al. [12] 108 9 (AF3,AFz,AF4,C1

Left/right fist Wavelet packet
LDA

CRR=94.72%
1

Cz,C2,O1,Oz,O2) Both fists & feet decomposition coefficient CRR=93.1%

(a) Right-Arm (b) Left-Arm (c) Right-Leg (d) Left-Leg

Fig. 1. Images of “arrows” for imaginary limbs movement

back propagation neural network (BP-NN). Identification ac-
curacies ranging from81.9% to 83.9% have been achieved.
In [9] authors have achieved80% correct recognition rate
(CRR) using Fisher distance as characteristic feature and BP-
NN as classifier, for the same number of subjects, session and
imaginary tasks as the previous case, while 60 EEG chan-
nels have been instead exploited. In [10], EEG data elicited
through imaginary left and right hand movements have been
acquired from nine subjects in three different sessions, using
eight central and parietal channels to extract power spec-
tral density (PSD) features. A half total error rate (HTER)
of 7.1% has been achieved using Gaussian mixture models
(GMMs) as classifier. EEG data from nine subjects have been
collected in two different days in [11], using four channels
and according to four standard MI tasks. Cepstral values
have been used as features to achieve94.72% accuracy with
Mahalanobis distance as classifier. In [12], EEG signals have
been acquired through nine channels in a single acquisition
session from108 subjects performing two protocols, based
on either left/right fist or both fists & feet’s imaginary move-
ments. A 94.72% accuracy has been achieved for the former
protocol, while 93.1% has been obtained for the latter, us-
ing wavelet packet decomposition for feature extraction and
linear discriminant analysis (LDA) as classifier. It can be
observed that the studies carried out so far report recogni-
tion performance evaluated over either EEG data collected
from a very small number of subjects, or data recorded dur-
ing a single acquisition session, which cannot provide any
convincing evidence for considering EEG signals as a stable
biometric identifier. In fact, under such conditions it is hard
to state whether the reported recognition performance depend
only on the characteristics of each subject’s neural activity,
or also on session-specific exogenous conditions, such as
the capacitative coupling of electrodes and cables with lights
or computer, induction loops created between the employed
equipment and the body, power supply artifacts, and so on.

Considering the limits of the contributions proposed so far,
the current work investigates the stability and invariability of
EEG signals over a 40 subjects’ database, acquired during
two distinct sessions which are separated by a week of time.

3. USED PROTOCOL & TEMPLATE GENERATION

3.1. “Motor Imagery” Protocol
The MI protocol is designed to collect EEG signals corre-
sponding to a series of right-arm, left-arm, right-leg and left-
leg imaginary movements. Four different images, depicted
in Fig.1, are employed as stimuli for eliciting the desired
responses and are sequentially shown in random order on a
LCD monitor, while a subject sitting on a relaxing chair with
armrests is asked to perform the imaginary movement asso-
ciated to the image currently displayed. The performed task
should trigger high-amplitude brain signals, which are then
acquired throughN EEG channels for further processing.
Each of the employed stimuli is randomly selected and dis-
played for 3s during 50 occurrences. An empty black screen
lasting 1.5s is shown in between every two consecutive im-
ages, and a 6s rest is allowed each time the whole set of four
stimuli has been presented for 5 times.

3.2. Template Generation
TheN acquired EEG signals are pre-processed using a com-
mon average referencing (CAR) spatial filter, in order to
reduce the artifacts related to a possible unsuitable refer-
ence. The obtained data are then spectral filtered into the
µ = [8 : 12] Hz sub-band [13], supposed to contain the most-
significant information available in MI EEG signals [4]. A
down-sampling to 128 Hz is performed, from the employed
256 Hz rate, to reduce the computational complexity. EEG
signals are then normalized to generate zero-mean data with
unit variance, and de-trended by subtracting their best-fitline.
Since MI EEG potentials’ amplitude is usually significantly
low in comparison with the overall behavior of the observed
fluctuations, further processing involving signal averaging
across multiple occurrences of EEG responses to the same
stimulus has to be performed, before providing the avail-
able data to the CNN. In more detail, the responses to each
event are extracted from the recorded data flow and organized
as epochs lasting∆t s after the presentation of a specific
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Fig. 2. Employed CNN Architecture.

stimulus. Given aN -channel EEG signal collected through
the proposed protocol, mean behaviors acrossR = 40 con-
secutive responses to the same stimulus are evaluated from
the available epochs to filter out the undesired noise, with
a maximum ofT = 50 averaged templates which can be
therefore generated for each imaginary movement. Having
observed in the performed experimental tests that it is diffi-
cult to achieve high identification accuracy exploiting a single
MI task among the considered ones, a feature-level fusion of
the available information is performed by horizontally con-
catenating the computed average EEG responses to the four
considered stimuli. This generates a template representation
for the EEG data of a specific user in the form of aT matrix
having size[N × P ], whereP = 4 · 128 · ∆t is the number
of samples obtained concatenating four signals, each lasting
∆t s and captured at 128 Hz.

4. NETWORK TOPOLOGY & TRAINING

A deep learning method leveraging on CNNs is proposed in
this paper to perform both automatic discriminative feature
extraction and person identification in a biometric identifica-
tion systems exploiting MI EEG signals. A CNN is a multi-
layer perceptron (MLP) network with a special topology con-
taining more than one hidden layer [14, 15]. CNN is in fact
advantageous when dealing with input data having a specific,
possibly unknown, inner structure, with the purpose of dis-
covering invariant distinctive features from them [16]. Such
approach can be therefore suitable for dealing with EEG data,
which typically exhibit substantial variability over timeand
individuals, making it hard to cope with them through classi-
cal local-kernel-based architectures.

4.1. Network Topology
The adopted CNN network topology is shown in Fig.2. It
is designed to have 4 conv layers, 2 max-pooling, 1 rectified
linear unit (ReLU), and a softmax-loss layer. Specifically,the
templates generated as described in Section 3.2 are provided
to the first hidden layer, where a set of very low-level features

of the signals are extracted. In the subsequent conv layers
the network built on such low-level features, and eventually
high-level features are generated in the fully connected layer.
The CNN is implemented using MatConvNet-1.0-beta24 [17]
packages, in a system configuration comprising 64GB RAM,
a 12GB TITAN X (Pascal) graphics card, an i7,3.40GHz
processor, and Windows 10 operating system. The detailed
network topology is described as follows:

• L0: the input layer has an input data size of[N ×P ], as
described in Section 3.2;

• L1M1: first hidden layer, composed ofP conv filters
of size[W ×W × 1], and a max-pooling (MP) layer of
size[B×B]. This layer transforms the input data into a
representation having sizeCL1M1 = [N1 ×P1 ×P ] =
[⌊N−W+1

B
⌋ × ⌊P−W+1

B
⌋ × P ], after convolving and

down-sampling.W = 5 andB = 2 are here used;
• L2M2: second hidden layer, composed of512 conv fil-

ters of size[W ×W × P ] and a max-pooling layer of
size [B × B]. This layer transforms the first hidden
layer’s data into a representation having sizeCL2M2 =
[N2 ×P2 × 512] = [⌊N1−W+1

B
⌋× ⌊P1−W+1

B
⌋× 512];

• L3M2R1: the third hidden layer is composed of1024
conv filters of size[N2 × P2 × 512] and a ReLU layer,
whose purpose is to introduce non-linearity into the
system. This layer changes the previous layer’s output
into aCL3M2R1 = [1× 1× 1024] feature map;

• L4M2R1: the output layer is produced by convolving
the previous layer’s activation map withU conv filters
of size[1 × 1 × 1024], beingU the overall number of
subjects enrolled in the considered biometric identifi-
cation system. This layer has only one map ofU neu-
rons representing theU classes/subjects, and is fully
connected withL3M2R1. Softmax-loss function is here
used as a loss function for back-propagation.

5. EXPERIMENTAL SETUP
5.1. Employed EEG Database
EEG data from 50 healthy subjects, whose age ranges from
20 to 35 years, have been collected according to the MI pro-
tocol described in Section 3.1 during two distinct recording
sessions, indicated asS1 andS2, temporally separated by a
week period. The employed EEG data acquisition system is
a Galileo BE Light amplifier with 19 electrodes, placed on
the subjects’ scalp according to the 10-20 international sys-
tem [18]. Out of 19 available electrodes, we consider for
experimental tests onlyN= 17 channels, excluding the two
frontal ones, i.e.,Fp1 andFp2, as most relevant EEG poten-
tials for motor imagery protocol are present in the central and
parietal regions of the brain [4].

5.1.1. Subject Selection
EEG responses to a MI protocol requires the voluntary acti-
vation of specific brain regions by the involved subjects. This
implies that, although subjects are asked to concentrate during
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EEG acquisition, some may not properly perform the required
imaginary tasks. A preliminary analysis on the available data,
to check whether the signals acquired from the 50 consid-
ered subjects are suitable for further processing, has thento
be performed. In order to do so, for each acquired subject,
the mean band-power measured over all the 50 occurrences of
each specific task is evaluated for all theN available channels,
and then averaged. If the difference in band-power estimated
for the same stimulus between the two performed acquisition
sessions is higher than a predefined threshold, the considered
subject is excluded from training and testing datasets in fur-
ther processing. In fact, a too high difference in band-power
would imply the subject could have not properly performed
the requested task, at least in one of the acquisition sessions.
A careful investigation of the data acquired from all the 50
considered subjects has highlighted that 7 of them behaved
too differently during all the four performed MI tasks, while
other 3 performed badly for at least 2 or 3 tasks. Such sub-
jects have been therefore excluded from further processing,
since their data have been assumed to be unreliable. A total
of U = 40 subjects have been therefore considered.

5.2. CNN Training
The employed CNN is trained using EEG data collected from
U = 40 enrolled subjects duringS1 session. The train-
ing dataset is an ensemble of the signals from all the con-
sidered subjects, represented through a matrix having size
[N ×P ×U ·T ]. 90% of each subject’s data is used for train-
ing purposes, while and rest10% is employed for validating
the build network. The learning rate of the CNN network is
set at0.0001 with a batch size of5, so that the loss can be
minimized with higher precision along with the execution of
every iteration. For our experiment we have investigated50,
100 200 and300 iterations, and found that a number of200 is
enough to achieve optimal accuracy.

5.3. Identification
The testing templates used for the identification stage are gen-
erated from EEG signals captured during sessionS2. Train-
ing and testing datasets are therefore completely disjoint. For
every testing sample of sizeN ×P , the trained CNN network
returns probability values corresponding to all theU = 40
classes/subjects. The maximum probability value identifies
the subject with which the testing sample is more similar.

6. RESULTS & DISCUSSION

Several time intervals∆t = [0.4, 0.5, 0.6, 0.7, 1, 2, 3] s, hav-
ing length up to the duration of the stimuli employed in the
elicitation protocol, are considered to check which duration
of the EEG response to MI stimuli is the best suited for bio-
metric identification. Being the size of the employed tem-
plates dependent on the exploited time interval, the proposed
network isad-hocdesigned for each considered scenario, as
described in Section 4.1. Fig.3(a) shows the rank-1 identifica-
tion rate for different values of∆t. Results show that the best
performance can be obtained considering EEG signals lasting
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Fig. 3. Identification rate for (a) Time interval selection and
(b) Cumulative Match Curve (CMC) forN=17.

600 ms, while worse identification rates are obtained taking
into account more information. This implies that a practical
MI protocol can be designed to be much shorter than the one
we evaluate, given that users can be assumed to get tired or
loose concentration after few hundreds of milliseconds fol-
lowing the stimuli presentation. The value∆t = 600 ms is
therefore kept as duration of the considered MI responses for
further testing. The performance obtained as rank-wise iden-
tification rates is shown in Fig.3(b). Rank-1 and rank-2 results
are respectively set at81.25% and93% accuracy, showing a
significant increase in performance at rank-2 over the consid-
ered database withU = 40 subjects. The achieved accuracy
then reaches99.3% for rank-5 identification. In comparison
with the state-of-the-art methods our EEG data are collected
from 2 distinct session which are separated by a week and
the CNN network training and testing are performed on two
distinct session. Therefore the obtained results confirm the
assumption that EEG data possess permanent discriminative
characteristics, therefore providing valuable information en-
couraging the adoption of brain signals for futuristic biomet-
ric identification systems.

7. CONCLUSIONS

A biometric identification system based on EEG signals
elicited through a MI protocol has been proposed in this pa-
per. A CNN has been designed to automatically perform
feature extraction and classification from the collected data,
allowing to perform user identification even in case EEG
data from different acquisition sessions are used for training
and testing purposes. EEG biometrics anyhow provides high
levels of confidentiality, universality and security, to improve
the performance achievable in multi-biometrics approaches.
It is also worth remarking that EEG-based biometric systems
might be useful for physically-impaired people who may be
unable to use conventional biometric recognition systems,
and it may also be used in law enforcement or defense-related
recognition systems demanding high security.
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