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ABSTRACT surface. The characteristics of the collected data depand o
étge specific acquisition protocol employed to elicit a given

This paper deals with electroencephalography (EEG)-bas Subject’s behavior. Different task-related responsgscally

biometric identification, using a motor imagery task, speci expressed in form of small time-locked changes in the elec-

ically perfqrmlng Imaginary  arms and_ legs movementst&ical activity of the brain, can in fact be obtained usingiva
Deep learning methods such as convolutional neural networ

(CNN) is used for automatic discriminative feature exti@ct ous s.t|mulalt|on parad|gms involving sensory or cognitive

. o . . io/video stimuli.
and person identification. An extensive set of experimental The present research work soecifically exploits EEG sid-
tests, performed on a large database comprising EEG dart1aI IiFi)t d during motor im Fr) M1 ty K pf r autom tig
collected from 40 subjects over two different sessionsrake als elicited during motor imagery (MI) tasks for automatic

at a week distance, shows the existence of repeatablerdiscri tg:)omn%t\x: '?gzgzgi{lﬁ?ﬁ Ir\‘/ﬁ;ﬁ;gtjﬁ!égliﬁfﬁi?osrﬁgfor
inative characteristics in individuals’ brain signals. 9 P 9 ) 9 P

) arms or legs movements without actually performing them.
Index Terms— Electroencephalography, Motor imagery, on imagined movement requires a conscious activation of
Convolutional neural network.

specific brain regions involved in movement preparation and
1. INTRODUCTION execution, typically accompanied by a voluntary prevemt_io
of the actual movement [7]. It propagates spontaneous time-
The availability of automatic biometric recognition syst&  |ocked brain signals from the visual cortex to the subjects’
able to measure unique physical and behavioral characteriscalp, where they can be recorded through EEG. Previous re-
tics of an individual to verify his identity, is of utterly im  searches show that motor imagery is a suitable technique for
portance for many practical applications. Such need has fogshe design of brain computer interfaces (BCI), helping dis-
tered the current widespread usage of several biometiis tra gbled people communicate and control devices [8]. It is how-
such as fingerprint, iris, and face just to cite a few. How-ever worth remarking that eliciting Mi-based EEG signais re
ever, these traits are often vulnerable to relevant issoes, quires h|gh alertness and Wi”ingness of the involved mb]e
plying the possibility of being forged or used for unethicalsince several imaginary movements have to be collected to
purposes [1]. The design of innovative biometric framewsork provide information useful for recognition purposes. More
based on either protected architectures [2] or novel secuiger, recorded data can also get contaminated by eye-iinki
identifiers [3], is therefore a highly prominenttopic. Imgthe-  artifacts and noise. Hence, extracting discriminativetfiess
gard, brain signals have recently attracted the attenfitineo  from the acquired data is a not-trivial task, difficult to berp
scientific community, on the basis of the postulated assumgormed through manual or simplistic approaches. In this con
tion that our brain possesses peculiar subject-specifipenro  tribution, we exploit the properties of deep learning meiho
ties. Itis in fact worth remarking that brain activity catth@  such as convolutional neural networks (CNN) to automati-

covertly sensed without subjects’ cooperation, is muckéiar cally extract subject-specific features, and classify tfiem
to be forged than traditional biometrics, and inherentlgrgu  people identification purposes.

antees liveness detection [4, 5]. Among the different medal

ties that can be used to sense brain’s activity for peopteyec 2. MOTOR IMAGERY FOR EEG BIOMETRICS

nition, electroencephalography (EEG) has received most ok brief summary of the state-of-the-art works using Ml-
researchers’ interest, since it permits collecting brafiort  elicited EEG signals for biometric recognition is providad
mation using portable and relatively inexpensive deviees, Table 1. In [8], authors have exploited Ml EEG data captured
notable advantage to raise the adoption of such trait intiprac through six channels from three subjects, elicited to perfo
cal biometric systems [6]. EEG signals are generated by thieands, feet and tongue movements during a single acqui-
synchronous firing of specific spatially-aligned neuronthef — sition session. Auto-regressive (AR) and moving average
cortex, i.e., pyramidal neurons, and can be measured as Vo{ARMA) coefficients have been used for feature extraction,
age differences by metal electrodes placed on the head scalfhile classification has been performed through multi+taye
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Table 1. Overview of state-of-the-art EEG based biometric systeased on the use of Ml tasks.

Paper Users Channels Type of Task Features Classifier Performance Sessiong

Hu [8] 3 6 (C3,C14,P3,P1,01,0,) | Left & right hand, foot, tongue AR/ARMA coefficient | Multi-layer BP-NN | CRR=81.9 — 83.9% 1

Xiao et al.[9] 3 60 Left & right hand, foot, tongue Fisher distance BP-NN CRR=80% 1

Marcelet al.[10] 9 8 (centro-parietal) Left & right hand Power spectral density GMM HTER=7.1% 3

Tsuruet al. [11] 9 4 (F,,C5,Cy,Py) Left & right hand, foot, tongue Cepstral Values Mahalanobis EER=0.17% 2
Left/right fist Wavelet packet CRR=94.72%

Yangetal.[12] | 108 | 9 (AF3AF.,AF,C, LDA 1
C.,,C3,01,0,,05) Both fists & feet decomposition coefficient CRR=93.1%

Considering the limits of the contributions proposed so far
the current work investigates the stability and invarigpibf
EEG signals over a 40 subjects’ database, acquired during

(@) RightArm  (b) Left-Arm (©) Right Leg (d) Left Leg two distinct sessions which are separated by a week of time.

Fig. 1. Images of “arrows” for imaginary limbs movement 3. USED PROTOCOL & TEMPLATE GENERATION

back propagation neural network (BP-NN). Identification ac 3.1. “Motor Imagery” Protocol

curacies ranging from81.9% to 83.9% have been achieved. The MI protocol is designed to collect EEG signals corre-
In [9] authors have achieve®D% correct recognition rate sponding to a series of right-arm, left-arm, right-leg agid |
(CRR) using Fisher distance as characteristic feature &d B |eg imaginary movements. Four different images, depicted
NN as classifier, for the same number of subjects, session angl Fig.1, are employed as stimuli for eliciting the desired
imaginary tasks as the previous case, while 60 EEG chanesponses and are sequentially shown in random order on a
nels have been instead exploited. In [10], EEG data elicitted CD monitor, while a subject sitting on a relaxing chair with
through imaginary left and right hand movements have beearmrests is asked to perform the imaginary movement asso-
acquired from nine subjects in three different sessioriagus ciated to the image currently displayed. The performed task
eight central and parietal channels to extract power speghould trigger high-amplitude brain signals, which arenthe
tral density (PSD) features. A half total error rate (HTER)acquired throughV EEG channels for further processing.
of 7.1% has been achieved using Gaussian mixture modelsach of the employed stimuli is randomly selected and dis-
(GMMs) as classifier. EEG data from nine subjects have beeglayed for 3 during 50 occurrences. An empty black screen
collected in two different days in [11], using four channels|asting 1.5 is shown in between every two consecutive im-
and according to four standard MI tasks. Cepstral valuegges, and asrest is allowed each time the whole set of four
have been used as features to achi&u&2% accuracy with  stimuli has been presented for 5 times.

Mahalanobis distance as classifier. In [12], EEG signalg hav

been acquired through nine channels in a single acquisitiod-2. Template Generation

session froml08 subjects performing two protocols, based The N acquired EEG signals are pre-processed using a com-
on either leffright fist or both fists & feet's imaginary move- mon average referencing (CAR) spatial filter, in order to
ments. A 94.7% accuracy has been achieved for the formereduce the artifacts related to a possible unsuitable -refer
protocol, while 93.% has been obtained for the latter, us-ence. The obtained data are then spectral filtered into the
ing wavelet packet decomposition for feature extractioth an . = [8 : 12] Hz sub-band [13], supposed to contain the most-
linear discriminant analysis (LDA) as classifier. It can besignificant information available in Ml EEG signals [4]. A
observed that the studies carried out so far report recognitown-sampling to 128 Hz is performed, from the employed
tion performance evaluated over either EEG data collecte@d56 Hz rate, to reduce the computational complexity. EEG
from a very small number of subjects, or data recorded dursignals are then normalized to generate zero-mean data with
ing a single acquisition session, which cannot provide anynit variance, and de-trended by subtracting their bebhdit
convincing evidence for considering EEG signals as a stabl8ince Ml EEG potentials’ amplitude is usually significantly
biometric identifier. In fact, under such conditions it isdha low in comparison with the overall behavior of the observed
to state whether the reported recognition performancerdépe fluctuations, further processing involving signal avenagi
only on the characteristics of each subject’s neural dgfivi across multiple occurrences of EEG responses to the same
or also on session-specific exogenous conditions, such atimulus has to be performed, before providing the avail-
the capacitative coupling of electrodes and cables withidig able data to the CNN. In more detail, the responses to each
or computer, induction loops created between the employeelvent are extracted from the recorded data flow and organized
equipment and the body, power supply artifacts, and so oras epochs lasting\; s after the presentation of a specific
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o NP Taaaaa ] (baxioza)s of the signals are extracted. In the subsequent conv layers
e (745121024 L,Mzalx the network built on such low-level features, and evenyuall
high-level features are generated in the fully connectgerla
The CNN is implemented using MatConvNet-1.0-beta24[17]
\ packages, in a system configuration comprising:@RAM,

a 12G B TITAN X (Pascal) graphics card, an i3,40GH z
processor, and Windows 10 operating system. The detailed
network topology is described as follows:

1 output (1) e Ly: the inputlayer has an input data sizg df x PJ, as
e described in Section 3.2;

e L;M;: first hidden layer, composed @ conv filters

Conv: (5x5x1)xP
e.g.: (5x5x1)x308

Input (NxP)
e.g.: (17x308)

__CL,M,R,: 1x1x1024 -4 of SiZG[W x W x 1], and a maX-pOOIing (M P) |aye|’ of
size[B x B]. This layer transforms the input data into a
E representation having sizé {M; = [Ny x P, x P] =
[[ A=W ) x [ 2=WEL |« P, after convolving and
Fig. 2. Employed CNN Architecture. down-samplinglV = 5 andB = 2 are here used,;

e L;M,: second hidden layer, composedsd conv fil-

stimulus. Given aV-channel EEG signal collected through ters of sizel/’ x W x P] and a max-pooling layer of

the pr_oposed protocol, rr:]ean behayiorls aciss 40| con;j ; size [B x B]. This layer transforms the first hidden

secutive responses to the same stimulus are evaluated from layer's data into a representation having sie;Ms —

the available epochs to filter out the undesired noise, with [Ny x Py x 512] = HN17W+1J % LP17W+1J x 512);

a maximum of7’" = 50 averaged templates which can be L Ii/l R? the third hidd(fn laver is co?n osed mﬁ

therefore generated for each imaginary movement. Having cganfilltérs of SiZéN, x P Xy512] and apReLU laver

observed in the performed experimental tests that it is-diffi 172 7 2 a kel ayer,
whose purpose is to introduce non-linearity into the

cultto achieve high identification accuracy exploitingragbe svstem. This laver changes the previous lavers outout
MI task among the considered ones, a feature-level fusion of Y : y 9 P Y P
into aCL3M2R; = [1 x 1 x 1024] feature map;

the available information is performed by horizontally eon _ ) .
catenating the computed average EEG responses to the four ® L«MzRi: the output layer is produced by convolving

considered stimuli. This generates a template represemtat the previous layer's activation map with conv filters

for the EEG data of a specific user in the form df anatrix of size[1 x 1 x 1024], beingU the overall number of

having sizelN x P], whereP = 4 - 128 - A, is the number supjects enrolled in the considered biometric identifi-

of samples obtained concatenating four signals, eactntgsti cation system. This layer has only one magi/ofieu-

A, s and captured at 128 Hz. rons represe_ntmg th& classes/subjects, a_md is fully
connected with.sM;R; . Softmax-loss function is here

4. NETWORK TOPOLOGY & TRAINING used as a loss function for back-propagation.
A deep learning method leveraging on CNNs is proposed in
this paper to perform both automatic discriminative featur 5. EXPERIMENTAL SETUP

extraction and person identification in a biometric idec#ifi 5.1. Employed EEG Database

tion systems exploiting MI EEG signals. A CNN is a multi- EEG data from 50 healthy subjects, whose age ranges from
layer perceptron (MLP) network with a special topology con-20 to 35 years, have been collected according to the Ml pro-
taining more than one hidden layer [14,15]. CNN is in facttocol described in Section 3.1 during two distinct recogdin
advantageous when dealing with input data having a specifigessions, indicated &l and.S2, temporally separated by a
possibly unknown, inner structure, with the purpose of disweek period. The employed EEG data acquisition system is
covering invariant distinctive features from them [16].cBu a Galileo BE Light amplifier with 19 electrodes, placed on
approach can be therefore suitable for dealing with EEG, datghe subjects’ scalp according to the 10-20 internationsd sy
which typically exhibit substantial variability over timend  tem [18]. Out of 19 available electrodes, we consider for
individuals, making it hard to cope with them through classi experimental tests onlyv= 17 channels, excluding the two
cal local-kernel-based architectures. frontal ones, i.e.F,; andF,;, as most relevant EEG poten-
tials for motor imagery protocol are present in the centnal a

4.1. Network Topology it parietal regions of the brain [4].

The adopted CNN network topology is shown in Fig.2.
is designed to have 4 conv layers, 2 max-pooling, 1 rectifie®.1.1. Subject Selection

linear unit (ReLU), and a softmax-loss layer. Specificalg = EEG responses to a Ml protocol requires the voluntary acti-
templates generated as described in Section 3.2 are pdovideation of specific brain regions by the involved subjectsisTh
to the first hidden layer, where a set of very low-level feasur implies that, although subjects are asked to concentrairegiu
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EEG acquisition, some may not properly perform the required

imaginary tasks. A preliminary analysis on the availablada  * 10 —
to check whether the signals acquired from the 50 consic .
ered subjects are suitable for further processing, hastthen

be performed. In order to do so, for each acquired subjec %

the mean band-power measured over all the 50 occurrences \ s /
each specific task is evaluated for all tNeavailable channels, T

and then averaged. If the difference in band-power estithate e;—55—1 — . 4 T 5
for the same stimulus between the two performed acquisition (:)e )

sessions is higher than a predefined threshold, the coesdider

subject is excluded from training and testing datasetsfin fu Fig. 3. Identification rate for (a) Time interval selection and

ther processing. In fact, a too high difference in band-powe(b) Cumulative Match Curve (CMC) faN=17.
would imply the subject could have not properly performed600 hil identificati i btained taki
the requested task, at least in one of the acquisition sessio ms, While worse igentilication rates are obtained taxing

A careful investigation of the data acquired from all the 50

into account more information. This implies that a pradtica
considered subjects has highlighted that 7 of them behave! Protocol can be designed to be much shorter than the one
too differently during all the four performed MI tasks, wil

we evaluate, given that users can be assumed to get tired or
other 3 performed badly for at least 2 or 3 tasks. Such su

oose concentration after few hundreds of milliseconds fol
jects have been therefore excluded from further processin

wing the stimuli presentation. The valde = 600 ms is
since their data have been assumed to be unreliable. A tot erefore kept as duration of the considered MI responses fo
of U = 40 subjects have been therefore considered.

urther testing. The performance obtained as rank-wise-ide
o tification rates is shown in Fig.3(b). Rank-1 and rank-2 itssu
5.2. CNN Training are respectively set &tl.25% and93% accuracy, showing a
The employed CNN is trained using EEG data collected frongjgnificant increase in performance at rank-2 over the censi
U = 40 enrolled subjects during'l session. The train- ered database with = 40 subjects. The achieved accuracy
ing dataset is an ensemble of the signals from all the conthen reache§9.3% for rank-5 identification. In comparison
sidered subjects, represented through a matrix having sizgjth the state-of-the-art methods our EEG data are colfecte
[N x P xU-T]. 90% of each subject’s data is used for train- from 2 distinct session which are separated by a week and
ing purposes, while and res0% is employed for validating the CNN network training and testing are performed on two
the build network. The learning rate of the CNN network isgijstinct session. Therefore the obtained results confien th
set at0.0001 with a batch size 06, so that the loss can be assumption that EEG data possess permanent discriminative

minimized with higher precision along with the execution of characteristics, therefore providing valuable informaten-

every iteration. For our experiment we have investigééd couraging the adoption of brain signals for futuristic bigtm
100 200 and300 iterations, and found that a number200 is  ric identification systems.

enough to achieve optimal accuracy.
5.3. Identification

The testing templates used for the identification stageeme g A biometric identification system based on EEG signals
erated from EEG signals captured during ses$i@n Train-  elicited through a MI protocol has been proposed in this pa-
ing and testing datasets are therefore completely disjpot  per. A CNN has been designed to automatically perform
every testing sample of siZ€ x P, the trained CNN network feature extraction and classification from the collectethda
returns probability values corresponding to all #tie= 40  allowing to perform user identification even in case EEG
classegsubjects. The maximum probability value identifiesdata from different acquisition sessions are used for itrgin
the subject with which the testing sample is more similar.  and testing purposes. EEG biometrics anyhow provides high
6. RESULTS & DISCUSSION levels of confidentiality, universality and security, todrove

] ) the performance achievable in multi-biometrics approache
Several time interval&\; = [0.4,0.5,0.6,0.7,1,2,3] s, hav- s als0 worth remarking that EEG-based biometric systems
ing _Iength up to the duratlon_of the stimuli emplpyed in themight be useful for physically-impaired people who may be
elicitation protocol, are considered to check which demti napje to use conventional biometric recognition systems,

of the EEG response to Ml stimuli is the best suited for bio-yq it may also be used in law enforcement or defense-related
metric identification. Being the size of the employed tem'recognition systems demanding high security.
plates dependent on the exploited time interval, the pregos

network isad-hocdesigned for each considered scenario, a?kcknowledgment

described in Section 4.1. Fig.3(a) shows the rank-1 ideatifi

tion rate for different values oh;. Results show that the best We gratefully acknowledge the support of NVID&\ Corpo-
performance can be obtained considering EEG signals ¢astirration, providing the Titan ¥ GPU used for this research.
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7. CONCLUSIONS

2065



(1]

(2]

(3]

(4]

(5]

8. REFERENCES

A. K. Jain, K. Nandakumar, and A. Ross, “50 years of
biometric research: Accomplishments, challenges, and
opportunities,"Pattern Recognition Lettersol. 79, pp.
80-105, 2016.

P. Campisi, Ed., Security and Privacy in Biometrics
Springer, 2013.

K. Revett, “Cognitive biometrics: a novel approach to
person authentication/ht. Jour. Cognitive Biometrics
vol. 1, no. 1, pp. 1-9, 2012.

P. Campisi and D. La Rocca, “Brain waves for automatic
biometric-based user recognition|EEE Transactions
on Information Forensics and Securitol. 9, no. 5, pp.
782-800, May 2014.

E. Maiorana and P. Campisi, “Longitudinal evaluation
of eeg-based biometric recognitiohZEE Transactions
on Information Forensics and Securityol. 13, no. 5,
pp. 1123-1138, May 2018.

[6] J. Klonovs, C.K. Petersen, H. Olesen, and A. Hammer-

shoj, “ID proof on the go: Development of a mobile
EEG-based biometric authentication systelgEE Ve-
hicular Technology Magazineol. 8, no. 1, pp. 81-89,
2013.

[7] T.Mulder, “Motor imagery and action observation: cog-

nitive tools for rehabilitation, Springer Journal of Neu-
ral Transmissionvol. 114, no. 10, pp. 12651278, 2007.

[8] J.F. Hu, “New biometric approach based on motor im-

9]

[10]

[11]

[12]

agery EEG signals,” 009 International Conference
on Future BioMedical Information Engineering (FBIE)
Dec 2009, pp. 94-97.

D. Xiao and J. Hu, “Identification of motor imagery
EEG signal,” in2010 International Conference on
Biomedical Engineering and Computer Scignéeril
2010, pp. 1-4.

S. Marcel and J. D. R. Millan, “Person authentica-
tion using brainwaves (EEG) and maximum a posteri-
ori model adaptation,”|[EEE Transactions on Pattern
Analysis and Machine Intelligencgol. 29, no. 4, pp.
743-752, April 2007.

K. Tsuru and G. Pfurtsheller, “Brainwave biometrics:a
new feature extraction approach with the cepstral analy-
sis method, Transactions of Japanese Society for Med-
ical and Biological Engineeringvol. 50, no. 1, pp. 162—
167,2012.

S. Yang, F. Deravi, and S. Hoque, “Task sensitivity in
EEG biometric recognition,Pattern Analysis and Ap-
plications pp. 1-13, 2016.

2066

(14]

(15]

(16]

(17]

(18]

[13] B.J. Edelman, B. Baxter, and B. He, “EEG source imag-

ing enhances the decoding of complex right-hand motor
imagery tasks,”IEEE Transactions on Biomedical En-
gineering vol. 63, no. 1, pp. 4-14, Jan 2016.

H. Cecotti and A. Graser, “Convolutional neural net-
works for P300 detection with application to brain-
computer interfaces,” IEEE Transactions on Pattern
Analysis and Machine Intelligenceol. 33, no. 3, pp.
433-445, March 2011.

D. Yu and L. Deng, “Deep learning and its applications
to signal and information processingEZEE Signal Pro-
cessing Magazinevol. 28, no. 1, pp. 145-154, 2011.

L. Ma, J. W. Minett, T. Blu, and W. S. Y. Wang, “Resting
state EEG-based biometrics for individual identification
using convolutional neural networks,” #0015 37th An-
nual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBCAug 2015,
pp. 2848-2851.

A. Vedaldi and K. Lenc, “Matconvnet — convolutional
neural networks for MATLAB,” inProceeding of the
ACM Int. Conf. on Multimedia2015.

J. Malmivuo and R. Plonsey,Bioelectromagnetism :
principles and applications of bioelectric and biomag-
netic fields Oxford University Press, New York, 1995.



