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ABSTRACT

In order to enhance the security of automatic speaker verifi-
cation (ASV) systems, automatic spoofing attack detection,
which discriminates the fake audio recordings from genuine
human speech, has gain much attention recently. Among
various ways of spoofing attacks, replay attacks are one of
the most effective and economical methods. In this paper,
we explore using recurrent neural networks for automatic
replay spoofing attack detection. More specifically, we fo-
cus on recurrent neural networks with more sophisticated
recurrent units that involve a gating mechanism, such as a
long short term memory (LSTM) unit and a recently pro-
posed gated recurrent unit (GRU). Our experimental results
on the ASVspoof 2017 showed that neural networks sig-
nificantly outperform Gaussian mixture models (GMM). In
addition, we achieved the best equal error rate of 9.81% on
the ASVspoof 2017 and 1.077% on the BTAS 2016 by using
GRU models, which outperform the best feed-forward neural
networks by 19% and 46%, relatively and respectively.

Index Terms— Recurrent neural networks, Replay De-
tection, ASVspoof 2017, BTAS 2016

1. INTRODUCTION

Like other biometric systems such as fingerprint and face
recognition, automatic speaker verification (ASV) systems,
which determine if a speech recording is generated by a pre-
registered speaker, are of great use in real life. Unfortunately,
ASV systems are still prone to different kinds of attacks. Due
to the rapid development in speech technology, voice conver-
sion (VC) [1] and speech synthesis (SS) [2] techniques make
it possible to generate synthetic speech that is good enough
to deceive an ASV system. In this paper, we focus on another
simple yet effective attacking method, the replay spoofing
attack. Replay attack can be carried out by replaying record-
ings of an enrolled speaker’s voice to an ASV system in place
of genuine speech. No expertise is required to perform replay
attacks and common devices such as smart phones can be
used as playback devices. Therefore, replay attack poses the
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greatest threat [3] to ASV systems. Experimental results from
2015 and 2017 ASV spoof challenges [3, 4] also show that
the detection of SS and VC spoofing attacks is easier than the
detection of replay attacks.

It is very important to develop effective countermeasures
to enhance the security of ASV systems. The ASVspoof
2015 challenge [4], which focused on detection of artificial
speech generated by VC and SS methods, has stimulated
many countermeasures. Most of the efforts were spent on
finding new features. Novel speech features such as dynamic
coefficients of cepstral features computed by formant-specific
block transformation [5] yield almost 0% equal error rate
(EER) if the spoofing types are known (i.e. homogeneous
spoofed speeches are used for training). Constant Q cepstral
coefficients (CQCCs), which use the constant Q transform
(CQT) instead of Fourier transform to process speech signal,
were shown to outperform the previous best result on the
ASVspoof 2015 database [6]. In terms of classifiers, Gaus-
sian mixture models (GMMs) are commonly used [5, 7, 8, 9].
Traditional feed-forward neural networks [10] or simple mul-
tiple layer perceptron [11] is needed if the input features are
high dimensional. Finally, model fusion is found to benefit
model robustness [11, 12].

Spoofing attack detection can be viewed as a simple clas-
sification problem where the input speech is classified as ei-
ther genuine human speech or spoofed speech. Therefore,
simple classifiers such as GMMs [5, 7, 8, 9], feed-forward
neural networks [10] and support vector machines [10] are
commonly used. On the other hand, spoofing attack detection
can also be viewed as a sequence classification task. There-
fore, recurrent neural networks that have been successfully
applied to various sequence prediction and sequence labeling
tasks such as speech recognition and language modeling can
also be used for identifying spoofing attack. In this paper, we
are interested in evaluating two closely related variants, i.e.,
long short-term memory (LSTM [13]) networks and gated re-
current unit (GRU [14]) networks, in spoofing attack detec-
tion.

The rest of this paper is organized as follows. In Section
2, we review the related works on spoof detection. In Section
3, we describe the RNN architectures with LSTM unit and
GRU unit, followed by the description of dataset, experimen-
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tal setup and results in Section 4. A conclusion is given in
Section 5.

2. RELATED WORKS

Features are crucial to the success of spoof detection. They
should provide salient and compact information for the clas-
sifiers. Researchers focus on magnitude based features and
phase based features [11]. Except CQCCs and MFCCs intro-
duced before, low-level features such as filter bank (Fbank)
have been found to lower error rate in speech recognition [15].
In this paper, we will mainly explore CQCCs, MFCCs and
Fbank.

As for the classifiers, one popular approach is to use the
traditional GMM. In this approach, two different GMMs are
trained using the genuine and the spoofed speech sample re-
spectively. During evaluation, the log-likelihood ratio (LLR)
score for a given evaluation utterance of T frames is calcu-
lated using the following equation:

LLR =
1

T

(
T∑

t=1

logP (ot|Mg)− logP (ot|Ms)

)
(1)

where P (ot|Mg) denotes the likelihood of genuine speech
and P (ot|Ms) denotes the likelihood of spoofed speech. An-
other efficient approach is to use the feed-forward neural net-
works. In this approach, the features within a context window
are usually spliced together as the inputs of deep neural net-
works [10]. During testing, it is similar to the case of GMM
by using the posterior probabilities given by the network out-
puts.

3. RECURRENT NEURAL NETWORKS

Recurrent neural networks have achieved tremendous success
for sequential modeling. The basic idea of Recurrent Neural
Networks (RNNs) is to make use of sequential information.
Unlike the feed-forward DNNs where the features within a
context window are spliced together as input to make use
of dynamic information, RNNs use their internal memory to
process arbitrary sequences of inputs, allowing information
to persist as they are stored in the memory cell. Therefore,
RNNs can capture more information about the sequence.

RNNs have loops in the hidden states, allowing informa-
tion to be passed from one step of the network to the next. It
can be unrolled in its forward computation. However, con-
ventional RNNs suffer from the notorious gradient vanishing
problem during backpropagation [16, 17]. The long short-
term memory (LSTM [13]) unit and the gated recurrent unit
(GRU [14]) are proposed to deal with this problem.

3.1. Long Short-Term Memory

As Figure 1 shows, the LSTM architecture consists of a set of
recurrently connected units, known as memory blocks. The

memory blocks usually contain one self-connected mem-
ory cells to store the temporal state of the network. Three
element-wise multiplicative units (namely the input, output
and forget gates) are used to control the flow of information.
In our implementation, we include peephole connections
from its internal cells to the gates in the same cell to learn
precise timing of the outputs [18].

At each time step t, the LSTM model can be described
using the following equations:

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi) (2)
ft = σ(Wf xxt +Wfmmt−1 +Wf cct−1 + bf ) (3)

ct = ft � ct−1 + it � g(Wcxxt +Wcmmt−1 + bc) (4)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (5)

mt = ot � h(ct) (6)

where it, ft, ot and ct denote respectively the activation vec-
tors of input gate, output gate, forget gate, and memory cell
at time step t. mt denotes the cell block output. The W terms
denote the weight matrices (e.g., Wix is the matrix of weights
from the input gate to the input). The b terms denote the bias
vectors (e.g., bi is the input gate bias vector). � denotes the
element-wise product of the vectors. g and h are the activation
functions of the cell input and cell output. In our experiments,
we use the tanh function.

Fig. 1. A single memory block of the LSTM.

3.2. Gated Recurrent Unit

Gated Recurrent Units (GRUs), recently proposed by Cho
etal. [14], are a simpler variant of the LSTM that shares many
of the same properties. The GRU has gate units to control the
flow of information inside the units, which is similar to LSTM
units. Figure 3 shows the architecture of a GRU unit. Unlike
the LSTM, a GRU unit only has two gates, the update gate
and the reset gate. The GRU fully expose its memory content
by eliminating the output gates.

The GRU computes the network activations and outputs
at every time step t according to the following equations:

zt = σ(Wzxxt +Wzhht−1 + bz) (7)
rt = σ(Wrxxt +Wrhht−1 + br) (8)

h̃t = tanh(Whxxt +Whh(rt � ht−1) + bh) (9)
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ht = zt � ht−1 + (1− zt)� h̃t (10)

Where xt, ht, zt and rt are respectively the input vector,
output vector, update gate vector and reset gate vector. h̃t is
the candidate output.

Fig. 2. A single memory block of the GRU.

3.3. RNN for Spoof Detection

As shown in Figure 3, the RNN we used has three recurrent
layers, followed by a softmax layer that classifies each input
frame into spoof or genuine. The RNN block in Figure 3 can
be either a LSTM memory block or a GRU block. In our
experiments, all the LSTM and GRU blocks have 256 cells.

During training, we cut every utterance into fixed size
pieces of length 30 frames. The step size for the pieces is
22. Thus there are eight overlapping frames. The categorical
cross-entropy is used as the objective function. In addition,
to alleviate the overfitting problem, the dropout technique is
applied to the output of RNN blocks with a dropout rate of
0.2.

Given an input frame ot, the posterior probabilities corre-
sponding to genuine and spoof labels for ot can be obtained
from the output of the network. Similar to the calculation of
LLR given in Equation (1), the score for a given utterance of
T frames can be calculated as follows:

score =
1

T

(
T∑

t=1

logP (genuine|ot)− logP (spoof |ot)

)
(11)

The system then makes a decision based on the normalized
score by comparing with a pre-defined threshold θ.

Fig. 3. The architecture of the RNN for ASV spoof detection
in our experiment.

4. EXPERIMENT

4.1. Dataset

In this paper, we focus on replay spoof detection. ASVspoof
2017 and BTAS 2016 [19] were used. Note that the BTAS
2016 dataset contains SS and VC speech samples which were
not included in our experiments. Both of the datasets are
separately partitioned into three subsets: training, develop-
ment and evaluation. Table 1 briefly gives the statics of them.
To encourage research towards generalized spoofing counter-
measure, only part of the replay conditions in evaluation are
seen in the training and development datasets, especially in
ASVspoof2017. In our experiments reported below, we used
all the training data to train the models and all the develop-
ment data to tune the model parameters.

Table 1. Number of utterances in both datasets. RE: replay,
HQ: high quality speaker, PH1: Samsung Galaxy S4 phone,
PH2: iPhone 3GS and PH3 is iPhone 6S.

Database Types Train Dev Eval
ASVspoof Genuine data 1508 760 1298

2017 All replays 1508 950 12922
Genuine data 4973 4995 5576
All replays 2800 2800 4800
RE-LP-LP 700 700 800

BTAS RE-LP-HQ-LP 700 700 800
2016 RE-PH1-LP 700 700 800

RE-PH2-LP 700 700 800
RE-PH2-PH3 - - 800
RE-LPPH2-PH3 - - 800

Table 2. The EERs(%) for GMM and DNN models on
ASVspoof2017.

Model GMM DNN
Feature CQCC CQCC
Dataset DEV EVAL DEV EVAL

EER 10.83 28.06 5.44 20.36

4.2. Evaluation Metrics

The spoof detection system assigns a score for every audio file
(e.g. the score given by Equation (1)). Higher scores means
that the system are more confident that the trial is genuine
speech while lower scores are assumed to favor the spoofed
hypothesis (i.e. replayed speech). Let FAR(θ) and FRR(θ)
be the false acceptance and false reject rates defined at the
threshold θ, i.e.,

FAR(θ) =
num. of replay trials with score > θ

Nspoofed
(12)

FRR(θ) =
num. of replay trials with score < θ

Ngenuine
(13)

whereNspoofed andNgenuine are total replay (spoofed) trials
and total non-replay (genuine) trials respectively. The metric
used in our experiments is the equal error rate (EER) which
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Table 3. The EERs(%) of DNN, LSTM and GRU on ASVspoof 2017.

Model DNN LSTM GRU
Feature MFCC Fbank MFCC Fbank MFCC Fbank
Dataset DEV EVAL DEV EVAL DEV EVAL DEV EVAL DEV EVAL DEV EVAL
EER 7.59 12.87 8.09 12.13 10.06 14.42 6.88 10.98 10.39 14.18 6.32 9.81

Table 4. The EERs(%) of DNN, LSTM and GRU on BTAS 2016.

Model DNN LSTM GRU
Feature MFCC Fbank MFCC Fbank MFCC Fbank
Dataset DEV EVAL DEV EVAL DEV EVAL DEV EVAL DEV EVAL DEV EVAL
ALL 1.153 2.058 0.779 2.007 0.273 2.149 0.052 1.107 0.241 1.912 0.039 1.077
RE-LP-LP 0.378 0.773 0.234 0.783 0.215 1.102 0.019 0.528 0.192 2.197 0.019 0.443
RE-LP-HQ-LP 2.905 2.534 2.213 2.308 0.425 1.893 0.122 1.182 0.39 2.038 0.114 0.752
RE-PH1-LP 0.266 1.312 0.254 0.662 0.168 0.698 0.056 0.141 0.235 0.897 0.031 0.191
RE-PH2-LP 0.128 1.002 0.065 0.908 0.063 0.568 0.018 0.209 0.055 1.734 0.019 0.267
RE-PH2-PH3 - 2.521 - 2.517 - 2.461 - 0.495 - 2.364 - 0.53
RE-LPPH2-PH3 - 2.622 - 2.994 - 3.717 - 2.32 - 3.184 - 2.592

corresponds to the threshold θEER at which the two detection
error rates are (approximately) equal. Thus the lower the EER
is, the better the system.

4.3. Experimental Setup and Results

Three kinds of features, namely, the CQCCs, MFCCs and
Fbank, were used in our experiments. We followed the con-
figuration in [7] to extract 30-dimension static CQCC fea-
tures. As for MFCC and Fbank, we extract the features ev-
ery 10ms with a 25ms Hamming window. Unlike the typical
settings in speech recognition or speaker recognition, we in-
creased the number of triangular mel-frequency filters to 120.
In addition, we used 30-dimension cepstral coefficients. We
have found that this can significantly improve the recognition
accuracy.

We first evaluated the GMM and DNN approaches. Two
GMM models, one for the genuine speech and the other one
for the spoofed speech, were trained. Each GMM has 512
Gaussian Components. Static features, together with their
delta and double delta, were used as the input for GMMs. As
for the input of conventional feed-forward DNNs, we spliced
the static features with a context window of 11 frames (i.e. 5
left frames and 5 right frames). There are three hidden layers
and each has 512 units. The output layer is a softmax layer
with dimension 2. Batch normalization [20] and dropout [21]
were used to ease model initialization and prevent the model
from over-fitting.

The results of GMM and DNN models with CQCCs as
the features are shown in Table 2. As can be seen, DNN
significantly outperform the GMM model on both the devel-
opment and evaluation data sets. We then go on to evaluate
DNN models with MFCC and Fbank features. The results are
shown in the first part of Table 3. As can be seen, with the

recommended settings (i.e. 120 filters and 30 cepstral coef-
ficients), the MFCC and Fbank features significantly outper-
form the CQCC feature. Therefore, in the following experi-
ments, DNNs with MFCCs and Fbank features will serve as
the baseline.

The results of RNN models on ASVspoof 2017 are shown
in Table 3. The Fbank feature achieves the best recognition
accuracy for RNNs in replay spoofing detection. This coin-
cides with the findings in other applications such as speech
recognition [22]. Finally, the GRU model with Fbank feature
achieves the best equal error rate of 9.81%, which outper-
forms the best feed-forward neural network by 19% relatively.

Table 4 shows the results on BTAS 2016. As we have
much more training data on BTAS2016, better results were
achieved. Almost the same conclusion can be drawn. The
best GRU model outperforms the best DNN model by 46%
relatively.

5. CONCLUSION

In this paper, we studied the recurrent neural networks for
replay spoof detection. Two widely used recurrent neural net-
works, namely the LSTM and GRU, were evaluated. We
found that both of them significantly outperform the feed-
forward neural networks. The GRU models achieve the best
results. Finally, by increasing the number Mel-frequency fil-
ters and cepstral coefficients, the Fbank feature outperforms
the CQCC feature in all our experiments.
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