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ABSTRACT

Since the amount of sensitive information stored on smart-
phones expands with the growth of their popularity, the need
for reliable and usable authentication on these devices in-
creases. Constant reauthentication requests of standard meth-
ods, such as PINs, passwords, and swipe patterns, annoy
many users who prefer to sacrifice the security of their mobile
devices for the quest for maximum usability. An alternative
to this approach is sensor-based authentication, where we
fingerprint the user interaction by processing signals from
sensors such as touchscreen or accelerometer. In this paper,
we construct a budgeted online version of One-Class Sup-
port Vector Machine (OC-SVM) to maintain authentication
performance while limiting the model size and evaluate the
performance compared to an unconstrained model. The re-
sults of our experiments reveal that it is possible to correctly
detect invalid smartphone users in a constrained environment
using our budgeted learning methodology.

Index Terms— Machine Learning, User Authentication,
Security

1. INTRODUCTION

Smartphone functionality has been constantly growing in re-
cent years, making them unavoidable tools in many aspects of
our everyday life. However, this increases the amount of sen-
sitive information stored on the mobile devices. While smart-
phones are easy to carry around, they are also prone to getting
lost or stolen. Furthermore, once a smartphone gets unlocked,
it often enables the attacker to have direct access to e-mail ac-
counts, private files, or credit card information.

Existing authentication methods on smartphones include
PINs, swipe patterns, picture codes, and fingerprint sen-
sors. To protect the phone, entry authentication requires the
user to reenter his credentials when using the phone after a
predefined time interval. This is considered inconvenient,
especially in cases of short lasting tasks such as answering
messages. As a result, users tend to prefer weak passwords,
choose highly increased lock periods, or leave their phones
completely unlocked. Furthermore, entry authentication can
be bypassed easily, leaving the phone content unprotected.
While PINs and swipe patterns are vulnerable to both smudge

attacks [1] and shoulder surfing [2], fingerprint sensors may
be tricked by fingerprint copies [3].

An appealing approach to address the drawbacks of tra-
ditional methods is continuous sensor-based authentication.
While using the mobile device that includes this type of
authentication, the validity of the user gets continuously as-
sessed in the background based on his current behavior. The
phone gets locked on suspicious behavior, forcing the user
to reauthenticate himself by means of other authentication
methods such as a PIN or a password. Continuous authenti-
cation should be able to reliably protect the phone content,
as user behavior has been proven difficult to mimic [4]. As
opposed to entry authentication methods, continuous authen-
tication does not rely on a secret being known, as this secret
can still be gained by an attacker.

Behavior-based authentication is essentially dependent
on a discriminative user model. Many works have investi-
gated the challenge of modeling user behavior with machine
learning. Apart from attempts based on device use habits [5],
characteristic short-term user interactions are utilized to build
a user profile. User interactions have mostly been modeled
based on keystroke dynamics and swipe patterns. These
gestures have been characterized in spatial and temporal
terms [6–8]. Additionally, there exist works that, utilizing the
sensor feedback, improve their user model [9, 10]. Further
research efforts attempt to refine their behavioral model by
including the application context [11].

The previous works have mostly been based on batch ma-
chine learning models which remain the same after an initial
training phase. However, user behavior changes over time [8].
A good user model should therefore adapt to these changes, in
order to not reject valid users from using their devices. In this
paper, we aim to solve this problem by utilizing online ma-
chine learning to adapt the user model continuously to recent
behavior. Yet, online machine learning suffers from model
growth over time. To address the resource-constrained envi-
ronment on mobile devices, we therefore use a methodology
called online learning on a budget, thereby limiting the mem-
ory footprint of the authentication framework. Overall, our
goal is to show that an online anomaly detection approach can
remain efficient in the authentication scenario while dealing
with a memory-constrained environment.

We leverage a well-known method: One-Class Support
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Vector Machine [12] and adapt it to our scenario of learning
on a budget. We design our adaptation to this method based
on related work in online learning for classification [13–15].
In order to test our approach, we plan and execute an exper-
iment with 28 live subjects performing typical user activities
on smartphones in order to gather their behavioral properties.
Using the traces of our subjects’ behavior we train and evalu-
ate our method of sensor-based continuous authentication.

In summary, we make the following main contributions:

• We combine spatio-temporal features from multiple
sensors to model user behavior for mobile devices.

• We create a budgeted version of One-Class SVM
method that maintains model accuracy while having
a smaller memory footprint.

• We use this budgeted learning methodology in an on-
line manner to adapt the user model continuously,
achieving almost 90% classification accuracy for most
of users.

2. METHODOLOGY

In our methodology we consider the situation where we
gather sensor data and train our model incrementally using a
valid user and then, in the test time, have both a valid user and
an attacker trying to use the device. Both the attacker and the
valid user leave a trace of their activity in the form of touch-
screen interaction, accelerometer, and rotation sensor values.
The goal of our system is to detect the attacker’s behavior as a
significant deviation from the model based on the valid user,
while letting the valid user use the device without unneces-
sary interruption. Therefore, we consider our problem as an
example of unsupervised anomaly detection problems.

2.1. Experiment Design

To gather user-specific data, we design a two-part experiment
focusing on different typical activities on the smartphone.

Requested Tasks in our Mobile App. We request users to
perform a series of tasks so we can train our model. A poten-
tial future app, delivered directly from the smartphone vendor,
could offer the option for users to initially pretrain their smart-
phones with their behavior, if they wish to enable the continu-
ous authentication feature. Another possibility is for the user
to perform the tasks presented in our app under the hood. This
means that the phone does not need to execute an applica-
tion, where it requests input from the user, but it can stealthily
collect data and train the models. The tasks that we use for
collecting continuous authentication data in our app are the
following: Image Finding, Text Reading, Zooming, Message
Composition, Entering a PIN and Phone Call. We design

these tasks taking into account the most often performed ac-
tivities on a smartphone. Each task is repeated ten times per
participant, which lowers the impact of sudden change of be-
havior because of external conditions (e.g., stress).

Tasks with Built-in Apps. We execute the next series of tasks
using the apps provided by the mobile devices themselves.
This makes the behavioral traces of users more natural, as
they regularly use this kind of apps and can perform the tasks
more smoothly. The tasks in this part were: Browsing, where
a user needs to find answers to three questions using Google
and Wikipedia, and Taking a Selfie using the smartphone’s
camera.

2.2. Data Collection

We used the Samsung Galaxy S4 smartphones with Android
5.0 to execute the above described experiments with 28 par-
ticipants in order to capture the discriminative features in user
activity. The Android API delivers a sequence of motion
events to the currently active application each time a user
touches the screen. The touch sequence is started by a down
event followed by a variable number of move events and an up
event closing the sequence. Each motion event has an event
ID, followed by its timestamp and its x and y center coordi-
nate, as well as major and minor axis of the ellipse making up
the touch contact. Apart from the standard motion event data,
for keyboard typing events we can record the keycode of each
key hit. For security reasons our version of Android does not
allow to capture keyboard input of the standard keyboard. For
this purpose we develop a keyboard that resembled the Sam-
sung keyboard, and run it as an Android service. Users are
instructed to choose the custom keyboard when opening the
app such that no other keyboard would accidentally be used.

In addition to touch data, sensor data from built-in ac-
celerometer and gyroscope (rotation sensor) are harvested.
Data are polled at a rate of five times a second. The ac-
celerometer measures acceleration in m/s2, while the gyro-
scope measures rate of rotation in rad/s along x, y and z axis
of the phone. Gathering sensor data is done by running an
Android service, same as in case of the custom keyboard.

Android only allows capturing touch events from within a
custom application. Therefore, it is not possible to gather mo-
tion events from the Android API while using standard appli-
cations for the second part of the experiment. Nevertheless, it
is possible to directly read from the input device driver under
/dev/input/eventX, where X is a number identifying the input
device.

2.3. Feature Engineering and Selection

Based on the ideas from related work, we capture a large
range of spatio-temporal features to determine which subset
is the most useful. Initially there are 59 features from swipe
gestures and 51 features from keystrokes. The swipe feature
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set contains data that characterize the trajectory of the swipe
motion, the velocity of movement, and size of the trace. On
the other hand, the keystroke features contain the similar ve-
locity and stroke size patterns as well as keycode and offsets
to the key center. Our feature set is based on the works of Vel-
ten et al [16], Frank et al. [17], and Buschek et al. [6]. Out of
this feature set we select most relevant ones based on the se-
quential feature selection procedure of Ruckstiess et al. [18].

2.4. Budgeted Anomaly Detection

Our goal is to detect invalid users based on the gathered data.
Therefore we leverage a method of anomaly detection called
One-Class Support Vector Machine (OC-SVM) [12]. OC-
SVM is an anomaly detection method that enables us to deter-
mine a region where most of the data points lie, giving them
the label +1. On the other hand, the rest of the points are
considered anomalies (labeled as -1). We optimize the mar-
gin between these two regions of points in order to have the
most accurate boundary. In the primal form this method can
be represented with the following formula:

min
1

2
w2 +

1

νN

∑
i

ξi − ρ (1)

subject to:
(wΦ(xi)) ≥ ρ− ξi, ξi > 0 (2)

The parameter w defines the position and orientation of the
classification boundary, while the value of ξ is tuned to in-
crease robustness to possible noise in the labeling process.
The value of N is the size of the sample set and the constant
ν is used for tuning the percentage of outliers.

In order to easier define the budget saving strategy, we use
a dual form of the decision function:

f(x) = sgn(
∑
i

αiK(xi, x) − ρ) (3)

where the value of ρ is tuned to get the best detection perfor-
mance on a certain data distribution. The dual form enables us
to use a kernelized version of the distance value (K(xi, x)).
This means that we can freely select the distance measure be-
tween points (K). If we use a linear distance measure, we can
only optimize a linear decision boundary. Since our samples
are not linearly separable, we use the Gaussian RBF kernel,
in order to have a more precise separation of points.

When using a dual form of One-Class SVM, we solve the
following optimization problem:

minα
1

2

∑
i,j

αiαjk(xi, xj) (4)

subject to:

0 ≤ αi ≤
1

vl
,
∑
i

αi = 1 (5)

This is a quadratic problem with linear constraints. In-
stead of solving this problem with a usual quadratic program-
ming procedure, we use gradient descent, where the gradient
looks like the following:

∂g(x)

∂αi
=

1

2
Kiαi (6)

For each new point that arrives, we execute 100 gradient
descent steps to update our model, with learning rate λ =
0.0001. After executing the model update, we execute the
maintenance to make sure that the parameter set does not in-
crease beyond the budget limits. There are multiple possi-
ble strategies for this maintenance. In the work of Wang et
al. [19] three strategies are defined: deletion, projection, and
merging. After testing all of them, we decided to use the dele-
tion method, as it provides approximately the same results as
other methods, but with faster execution, which is very im-
portant in online learning. In the deletion method, we simply
remove smallest values of αi in order to fit to the budget limit.

Since we have two broad feature sets (i.e., swipe gestures
and keyboard writing), we build two separate models using
the previously described procedures. For each new relevant
event we first detect the type of event based on the values that
we can read from the sensors and then run the authentication
process using the appropriate model.

3. EVALUATION

We tested our procedure using the data gathered from our ex-
periments, with a type of crossvalidation. All the gathered
data from querying touch screen, keyboard, acceleration, and
gyroscope sensors were turned into feature points and the or-
der of actions from the experiment was randomized. The ran-
domized sets of points were divided into training (70%) and
test sets (30%). The results had been averaged over 5 runs
to make them more reliable. At first we do this test sepa-
rately for swipe and keyboard gestures in order to investigate
the model behavior for the two sets of features. We test the
model performance in an unconstrained scenario, followed by
tests with different budget size limits. Afterwards, we execute
a joint test to simulate the real-world behavior and analyze the
model performance for different test users.

3.1. Model Growth in an Unconstrained Scenario

First, we show a graph of the model growth suitable to our
scenario of using One-Class Support Vector Machine. Fig-
ure 1 shows that in an unconstrained scenario the model
grows almost linearly. While we can only show growth in
the support vector set for the limited sequence of training
samples we used in crossvalidation, the model would keep
receiving a continuous stream of samples in reality, thereby
growing unlimitedly. This clearly shows demand for a limit
on model size as we would otherwise gradually reserve more
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(a) Swipe model
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(b) Keyboard model

Fig. 1. Increase in the model size for increase in training sam-
ples presented to the model for keyboard features.
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Fig. 2. Results for different budget constraints with swipe
(a,b,c) and keyboard (d,e,f) features

and more memory on users’ phones. Not only is this incon-
venient in terms of memory footprint, but it would also build
up a very complex model, thereby increasing computational
cost, which might in turn yield a reduced operating speed.
Besides, old support vectors kept in the model may not be
reflecting current user behavior. While they unnecessarily
reserve memory, they may also degrade performance of the
model.

3.2. Budget Size

The next group of plots, displayed on Figure 2 shows the
change of results for swipe features with the increase in the
available support vector budget. On the first plot the accuracy
grows very fast with the number of available support vectors,
achieving 95% of the maximum accuracy with only a half of
maximum support vectors as a limitation. This shows that we
can place a demanding limit on the size of the model and still
achieve high accuracy. Furthermore, the next plot shows fast
decrease in false acceptance rate with the number of avail-
able support vectors. This means that even for a small bud-
get we can get an authentication system where attacks will
have a high detection rate. On the other hand, false rejection
rate is actually growing with the number of available support
vectors. This means that in terms of this particular criteria,
the performance does not improve with the available budgets.
Possible reason for that is that more complex model tends to
have high bias towards the training set. This means that more
initial training data may be necessary for more robust models.

Fig. 3. Confusion Matrix.

We also show similar results for the keyboard features.
However, in the case of keyboard features the growth of accu-
racy is not as fast and we need around 150 vectors to achieve
the maximum performance, as a difference from the swipe
features, where we only need around 100. In terms of FAR
and FRR, the test shows similar trends to the results with
swipe features.

3.3. Confusion Matrix

The confusion matrix on Figure 3 contains the information on
the mean accuracy when using various pairs of training users
and attackers. This figure shows that for the most pairs we can
achieve high accuracy in recognizing the attack. However, for
some users the performance is still problematic. In particular,
for the users 8, 13, and 26 we cannot properly differentiate the
attackers, because the models are not discriminative enough.
By gathering more data this performance can be improved.

4. CONCLUSION

In this paper we propose a budget-efficient model for contin-
uous authentication on mobile devices, using the data from
touchscreen interaction as well as the values from accelerom-
eter and rotation sensor. We develop an online budgeted ver-
sion of the well-known OC-SVM algorithm and train it using
gradient descent in an online manner. We execute the train-
ing and testing experiment on a dataset from behavioral traces
that we gather from 28 subjects. This enables us to achieve
performance highly comparable to the results using unlimited
models, while reducing the model size by more than 50%.
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