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ABSTRACT

The problem of detecting malware in mobile devices is
becoming increasingly important. While most of the mobile
devices run on very limited resources, having anti-viruses in-
stalled on-board is not very practical, especially in IoT de-
vices. Even if such tools exist, malware could hide or manip-
ulate their fingerprint, making them not easy to detect. Thus,
having effective countermeasures for after malware intrusion
is paramount. In this work, we utilize deep learning ability to
learn multiple levels of representations from raw data to clas-
sify power consumption signals obtained from smartphones.
The objective is to build a framework that can intelligently
tell if the smartphone has a malware or not by only monitor-
ing its power consumption. Validation tests confirm that the
proposed framework show that information contained in the
measured power consumption of smartphones can in princi-
ple be used to identify malware existence and further can tell
how active malware is with very high accuracy.

Index Terms— Deep Learning, Malware Detection, Sig-
nals Classification

1. INTRODUCTION

Todays’ smartphones with their PC like computing capabili-
ties are people’s preferred means of performing many of their
personal computing tasks. The applications range from per-
forming online banking to health monitoring apps, to name
a few. These facts make them the next big targets of ma-
licious software and security attacks. However, mobile de-
vices run on limited resources, which lead to the argument
that detecting malware on-board is a nontrivial research chal-
lenge. To protect smartphones from these threats, detecting
malicious behavior from the normal ones is a critical problem
to be solved.

In literature, several studies focused on malware detection
on smartphones. These approaches are either based on static
analysis or dynamic analysis. In static analysis [1, 2, 3], the
source code and manifest file of an app are analyzed with-
out execution to check if it is malicious app or not. On the
other hand, in dynamic analysis, an app is examined during

runtime. Thus, these approaches aim to detect infected de-
vices to minimize further damage, for example. In dynamic
analysis approaches, the main idea is to monitor the device to
capture certain information to be used for analysis. The mon-
itoring process can be divided into on-device and off-device
approaches. Also, the work done under dynamic analysis can
be further classified based on the type of information being
analyzed [4]: network based information [5], operating sys-
tem (OS) based information [6], or power consumption based
information. In this paper we focus on the approaches that
use power consumption information to detect malware.

To this end, on-device monitoring based approaches have
been used for detecting energy-greedy anomalies, mobile
malware variants, and sensitive activities [7, 8, 9, 10, 11].
Apart from power signature analysis, machine learning
methodologies have been explored in detecting suspicious
activities [12, 13]. The work in reference [14] focuses on
anti-malware tools adaptability for changing malware intru-
sion pattern. Similar research has been reported in reference
[15] to show the effectiveness of a model to detect malware
in different operation scenarios of mobile devices. Machine
learning methods, such as Support Vector Machine (SVM),
have been applied in detecting malware [16, 10, 17].

The solution strategy in this work relies on the hypothesis
that every piece of software, whether malware or benign, will
have a trace in the power consumption of the mobile device.
This argument makes it inevitable for malware to go unde-
tected having the right approach to process and analyze power
signals. The used tool in the proposed detection methodology
is Deep learning (DL) [18]. Due to its flexibility, versatility,
and performance, DL has been applied to the analysis of data
from diverse scientific disciplines, including time-series sig-
nals. DL is the result of training many layers of nonlinear
processing units to extract features and model the data.

In this paper, we make the following contributions; (i) we
propose a proof-of-concept of the idea that utilizes side chan-
nel information, represented by power consumption signals,
and DL to detect malware on smartphones; (ii) we investigate
the impact of the measurement’s sampling frequency on the
detection performance. To the best of our knowledge, we have
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not come across any study that follows the same approach.
The remaining sections of the paper are organized as fol-

lows. Section 2 provides the background related to DNN.
Section 3 sets the context of the addressed problem. Section
4 describes the dataset used in this work and the proposed
methodology. Section 5 presents the results and some discus-
sion. Finally, Section 6 lists some conclusions of this paper.

2. DEEP LEARNING

In this section we give an overview on Deep Neural Networks
(DNNs). We discuss the architecture, the mathematical for-
mulation, and the employed learning algorithms.

2.1. DNN Structure

In its generic form, DNN consists of many non-linear process-
ing units, called neurons or perceptrons, arranged in multiple
layers. It has three main layers: input layer; hidden layers;
and the output layer, as shown in Fig. 1. The basic build-
ing block of a network is a neuron. In general, except for
the input layer (l = 0), neurons are arranged into a network
of neurons. Each column of neurons is called a layer, and
one network can have multiple layers. The architecture of
the neurons in the network is often called the network topol-
ogy. A deep learning model can be constructed with different
DNN architectures (e.g., Deep Belief Networks (DBN) [19],
and Convolutional Neural Networks (CNN)) [20]). The no-
tational representation of DNN that maps inputs to outputs is
introduced in the following.

Hidden layers

Output layer

x1

x2

xnx

y

W [1 ] W [l ]

lth layerlayer : 0 layer :1 layer :L−1 layer :L

Input layer
x̄ i=[ x1, x2, x3, .... , xnx

]

Fig. 1. Generic structure of fully connected DNN

Let X represent the input matrix of the dataset. X =
[x̄1, x̄2, x̄3, .., x̄i, .., x̄m], where x̄i is a nx dimensional col-
umn vector that represents the ith training example, the size
of X is m × nx. L is the number of layers in the network. y
is the label (ground truth) vector of the dataset of size m× 1,
and yi is the label of the ith example. ŷ represents the output
vector of the network (the prediction). W l is the weight ma-
trix of the lth layer, the size of W l is (# of units in next layer *
# of units in the previous layer). bl is the bias vector in the lth

layer. For simplicity, we are dropping the bias term b in Fig.
1. Lastly, nl

h is the number of hidden units in the lth layer,
and ny is the number of hidden units in the output layer.

Each neuron has a set of inputs, each of which is given a
specific weight W l. The neuron, after it computes the sum
of the weighted inputs (zl = āl ∗ W l), applies activation

function that introduces the non-linearity. To illustrate, in
input layer (layer l = 0), ā0 = x̄i, and in the lth layer,
āl = g(zl−1). Possible activation functions are: (i) Sigmoid
g(zl) = 1

1+e−zl
; (ii) Rectified Linear Unit (Relu) g(zl) =

max(0, zl); and (iii) Tanh function g(zl) = ezl−e−zl

ezl+e−zl
. The

choice of the activation function in the output layer is strongly
constrained by the type of problem that is modeled.

2.2. Operation of DNN

The intuition behind neural network idea can be explained as
follows [21]: (i) by using multiple nonlinear processing units
stacked in multiple layers and having enough data, enough
computational powers, and enough training time, a network
is able to learn on its own almost any complex function; (ii)
once a DNN learn to represent a function with parameters
(weights), through applying sophisticated optimization tech-
niques (e.g. stochastic gradient decent (SGD)) on a loss func-
tion (Cross Entropy (X-E) and Mean Square Error (MSE) are
widely used loss functions), optimal weights can be learned.
In other words, DNN learns a parameterized function that rep-
resents the input data with multiple levels of abstraction. The
learning procedure results in a complex function that can op-
timally represent the structure of the dataset.

To put the pieces together, Algorithm 1 shows the steps
of Feed-forward and Back-propagation in pseudocode format
for a better visualization. It starts with performing Feed-
forward (line # 4). The mathematical equations used to com-
pute the forward pass are as follows: (i) in layer #l: zl =
W l ∗ āl−1 and āl = g(zl). Both zl and āl are nl

h dimen-
sional column vectors. After iterating over all of the training
examples, the output is the prediction vector ŷ of size m× 1.

Algorithm 1: Learning algorithm
Input : Dataset input & label matrices X & Y :

(x̄i, yi), i ∈ {1, ...,m}
Output: Optimal parameters {W,b}

1 Parameter Initialization {W,b};
2 while epoch < Nepochs do
3 for each input x̄i in X do

/* Feed-forward */
4 Feed-forward x̄i through all layers
5 zl = W l· x̄i + b̄→ āl = g(zl)
6 if l = L (Output layer) then
7 ŷi = āl
8 end
9 end

/* Back-propagation */
10 Propagate error back to adjust the weights
11 Evaluate CMSE(W, b) = 1

m

∑m
i=1 (yi − ŷi)

2

12 Minimize CMSE(W, b) & Update Parameters
13 end

In line # 11, the error is propagated back through the chain

2033



of rule of derivatives. The starting point is the output layer
l = L, where the error is computed by evaluating the loss
function. The error derivative with respect to the output of
a unit is computed by differentiating the loss function (also
known as cost function). As explained in Algorithm 1, if
the cost function is MSE, then this gives (y − ŷ). Once the
∂CMSE

∂WL is known, the weight WL−1 can be updated. Using
the chain of rule of derivatives, the wight matrix of the layers
before get updated accordingly till layer l = 1 is reached.

3. PROBLEM DESCRIPTION

This article focuses on the problem of detecting malware run-
ning on smartphones through investigating only their power
consumption measurements without using any other sort of
information from the smartphone OS. This approach is chal-
lenging due to the fact that the measured power consump-
tion is the total power consumed by the smartphone, and thus
some of the smartphone hardware components exhibit non-
linear energy consumption characteristics. This means if the
malware code is utilizing specific piece of hardware and at
the same time a benign application is also using it, the power
consumption may not be linearly increasing or decreasing, at
least if the measurement sampling rate is not high enough to
capture such an event. The nonlinearity behavior is also char-
acterized by tail energy concept. This means that a specific
piece of hardware stays powered on for a short period of time
after it does its job. For instance, the 3G wireless network
interface stays on for some time after the smartphone has re-
ceived/transmitted all the data [22]. Therefore, the main ques-
tion that this paper aims to answer is that, by having a high
power consumption sampling rate, can we utilize smartphone
power consumption to detect interesting events?

Fig. 2. Two power traces of a smarphone

4. DATASET AND SOLUTION STRATEGY

In this section, we discuses the proposed methodology and
dataset used to evaluate it.

4.1. Dataset
The dataset consists of raw power consumption signals of An-
droid smartphone that were collected using Monsoon Power
Monitor [23] with maximum sampling rate fs = 5000 Hz (for
more details on test bench, refer to [17]). The main experi-
ment was, using WiFi connection, to stream for T = 300 sec-

onds of Youtube video. Based on the sampling frequency, this
comes to 1,500,000 samples per trace. This experiment was
conducted under a very controlled execution environment and
repeated under 7 different scenarios. In the first scenario, it
was ensured that no other apps are running in the background
other than Youtube. This scenario is called No Malware class.
In the other six scenarios, an emulated non-adaptive malware
code was running in the background on the smartphone while
streaming the same Youtube video (the power consumption
signal of an extreme case where the malware is highly ac-
tive (Dut = 12%) is shown in Fig. 2 - solid line). The em-
ulated malware has a tunable activity cycle, called “malware
activity duty cycle” (Dut), which represents the percentage of
time the malware is active. When the malware is active in the
background, the task it performs is downloading some con-
tent from a remote server. These six scenarios are: malware
with Dut = 1% class, malware with Dut = 2% class, malware
with Dut = 3% class, malware with Dut = 4% class, malware
with Dut = 8%class, and malware with Dut = 12% class. In
each of the 7 scenarios, we repeated the experiment 15 times.
Therefore, in total the dataset has 105 power traces.
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Off-Device monitoring
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Power traces
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Testing 
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Fig. 3. Deep learning model for malware detection

4.2. Method
Motivated by the fact that DNN has the capabilities to work
on raw data, we came to the idea of applying DL directly to
our dataset, allowing DL to learn the embedded information
features by itself. In a previous work [17], we hand-crafted
features from raw data and applied SVM to classify signals.
The performance was not very good and suffered from high
false negatives. The reason behind the bad detection rate is
that by using the mean and standard deviation as extracted
features, we tend to lose much discriminative information.

In this work, however, we treat these power consumption
traces as signals that carry information about the operational
state of the smartphone. Our methodology has been illus-
trated in Fig. 3, where we start with samples preparation.
Then we train DNN with 3 layers to classify power signals.

Data Preparation: A key aspect of our method is data
preparation. In our dataset, each power trace x(t), is a vector
of size T ∗ fs samples, as we explained in Section 4.1. We
introduce the concept of the “labeling window”, where the
size of this window represents the number of selected sam-
ples nx. For example, if nx = 5000, this means the window
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Fig. 4. Confusion matrix for fs = 5000 and nx = 5000

has 5000 samples which is equivalent to 1 second of the ex-
periment time. In this case, the task involves labeling each 1
sec of each power trace with same label of the original signal.
For example a power trace x(t) with the label No Malware
(y = 0), generates x(t)/nx = 1, 500, 000/5000 = 300 train-
ing example x̄ labeled with the same original label (y = 0).
In total, in this example we get from 105 power traces in our
dataset 105 ∗ 300 = 31, 500 training examples.

Model: Our DNN architecture model contains three lay-
ers (L = 3). The input layer of size nx followed by two hid-
den layers, each has nh neurons. The output of the these two
layers is fed to a classier layer, which is simply a fully con-
nected (affine) softmax output layer of a size ny (the number
of classes), as illustrated in Fig. 3. The softmax layer pro-
duces a distribution over the 7 classes in our problem.

5. EXPERIMENTS AND RESULTS

The problem is formulated as a multi-class classification
problem, where we define x̄ ∈ X as input training example
vector, and y ∈ {0, 1, 2, 3, 4, 8, 12} represents a possible
label. y = 0 means class No malware, y = 1 means class
malware with Dut = 1%, and so on. In the context of our
application, the above notation translates into the following:
The input sample x̄i is a nx time series samples of power
consumption measurement, and yi is the corresponding la-
bel. Given x̄i, the model predicts ŷi which tells whether the
smartphone has a malware or not. If it does have malware, it
can further identify the malware activity.

Experimental Setup: All of the experiments were per-
formed using Tensorflow and Keras [24] Python libraries. The
two hidden layers are identical with 128 neurons and Relu
non-linear activation function in each. The output layer, that
is the classifier, has 7 neurons with Sigmoid non-linear acti-
vation function to produce likelihood over the 7 classes of la-
bels. The used loss function is Cross-Entropy and the used op-
timizer in the learning/training phase is Adam [25], which is
a method for stochastic optimization. We evaluate our model
empirically on our dataset described in Section 4.1. For a bet-
ter model generalization and to maintain similar classes’ dis-
tribution in the training and testing dataset, we use stratified

Fig. 5. Detection accuracy vs sampling rate

sampling algorithm to randomly split the dataset into 70% for
training and the remaining 30% for testing. As we explained
in Section 4.2, the parameter that we will be varying is the
size of “labeling window”, nx, i.e. we investigate how the
size of the “labeling window” impacts the overall detection
performance. We also investigate the impact of the sampling
rate (fs) on the detection performance.

Classification Results: We use accuracy as the perfor-
mance metric. The detection performance for the case of
“labeling window” nx = 1000 & fs = 5000 is shown by
the confusion matrix in Fig. 4. These results shows that the
model was not only able to detect malware with high accuracy
(9̃9.98%), but also was able to differentiate the degree of ac-
tivity of each malware, with a very low False negatives (FN).
A low FN rate is a useful measure for malware detection tech-
niques since we have more cost when anomalous behavior is
present but does not get detected. This shows a good poten-
tial of using smartphone power consumption signals to detect
more insights about the operational state of the devices.

Figure 5 summaries our results and shows the accuracy
for different sampling frequency rates. The accuracy is higher
than 90% for all of the cases where the sampling rate is higher
than 1000 samples per second. The takeaway from these re-
sults is that, the higher the sampling rate, the more is the dis-
criminative information captured by the model. We also have
tested our model on traces that was not included in the dataset,
traces that the model has never been exposed to. The obtained
accuracy is 90% and the FN rate is 5%. Results shows that our
model generalizes well on unseen test examples as well.

6. CONCLUSION

This paper introduces a new proof-of-concept smartphone
malware detection technique that is based on deep learning
and the power consumption signals of the smartphone. The
measured power readings were treated as signals and used
as raw data to train a deep learning model. The results were
promising and show a potential of applying this technique to
detect more insights about the smartphone operational state
(e.g. hardware failure). As a next step, we will validate our
approach using real malwares and including other apps to
build more realistic scenarios.
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