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ABSTRACT

Motivated by privacy issues in the Internet of Things (IoT), we gen-
eralize a previously proposed privacy-preserving packet obfuscation
scheme to guarantee differential privacy. We propose a locally differ-
entially private packet obfuscation mechanism as a defense against
packet-size side-channel attacks in IoT networks. We formulate the
problem as an optimization over a conditional probability distribu-
tion (channel) between the original and obfuscated packet sizes and
show that the optimal set of obfuscated packet sizes is a strict subset
of the set of original packet sizes. We study the optimal mecha-
nisms for minimizing the (average or min-max) bandwidth overhead
subject to a privacy constraint by solving the corresponding (linear
or convex) program. We demonstrate our methods on synthetic and
real data to illustrate privacy-bandwidth tradeoffs in different set-
tings. Systems with many bandwidth-intensive devices can easily
mask low-bandwidth devices. For data collected from actual smart
home IoT devices, we show how the packet size distributions be-
come increasingly indistinguishable as the level of privacy protec-
tion increases. The proposed mechanism highlights the possibility
for bandwidth-constrained users to optimally tune their privacy pref-
erences and trade off privacy with bandwidth.

Index Terms— Internet of Things, side-channel attacks, packet
obfuscation, local differential privacy, linear/convex program.

1. INTRODUCTION

Systems in the Internet of Things (IoT) use ubiquitous devices to
continuously sense and monitor users in a diverse set of applica-
tions, such as smart homes, smart health care, intelligent transporta-
tion systems, and environmental/industrial monitoring. Supporting
these applications greatly benefits and improves the users’ quality of
life. The data collected from these devices will often be sent over
wireless links: the volume of data imposes huge challenges for pri-
vacy protection [1] and bandwidth conservation [2].

Fine-grained monitoring data creates a security loophole that
allows adversarial inference on private information. More recently,
traffic analysis attacks [3, 4, 5, 6] (also known as side-channel at-
tacks) have demonstrated that statistical network traffic patterns
from IoT devices are highly correlated with the underlying sensing
data. A passive wireless eavesdropper is able to extract sensitive
information even if the data content is well protected under cryp-
tographic techniques. For example, Apthorpe et al. [3] argue that
a last-mile network observer or a WiFi eavesdropper can observe
features of network traffic generated by smart home IoT devices.
They use a clustering method to identify device types and oper-
ating states even if the devices use TLS/SSL for communication.
Das et al. [4] show that an encrypted packet stream from wearable
(e.g., a fitness tracker) Bluetooth Low Energy (BLE) signal allows
a BLE sniffer to identify user activities (e.g., whether the person
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is at rest/working/walking/running) based on the packet-size and
inter-arrival time distributions, without payload decryption. Buttyan
and Holczer [5] apply simple signal processing techniques (Discrete
Fourier Transform and Welch Averaged Periodogram) on traffic
rates from wireless body area sensor network to reveal the types
of medical sensors mounted on the patient, and hence the patient’s
health conditions. Finally, supervised machine learning can dis-
tinguish between network traffic generated by non-IoT and IoT
devices, and further between specific types of IoT devices [6].

Early works on traffic privacy focused on building anonymous
networks. An adversary can observe the correspondences between
the size and timing of messages going into and out of an intermedi-
ate network node (e.g., a router), and make inferences about source-
destination pairs in the network. Chaum [7] proposed using a cas-
cade of anonymity mixes to hide the correspondences by outputting
at each mix uniformly sized messages with padded bits. Similarly, a
prototypical realization of the IoT system [8] consists of a gateway
system that manages networked [oT devices. An adversary can ob-
serve the incoming and outgoing packets of the gateway and figure
out which device is in operation and communicating with its appli-
cation server. Even with deployment of the anonymity mixes, as the
side-channel attacks imply, the adversary can still look at the packet
sizes of an IoT device locally to extract contextual information and
cause privacy breach. Wright et al. [9] and Apthorpe et al. [10] in-
vestigated packet obfuscation schemes under perfect privacy. How-
ever, with a limited bandwidth budget such as in low-power and low-
memory loT networks, perfect privacy is often not achievable and
users would prefer tunable privacy. Mathur and Trappe [11] studied
the fundamental tradeoff between mutual-information privacy and
bandwidth but did not provide any empirical evaluation.

Our goal is to generalize a packet obfuscation mechanism
against packet-size side-channel attacks to guarantee differential
privacy [12], a stronger privacy guarantee than mutual-information
privacy [13, 14]. Particularly, we adopt the local differential privacy
model [15] where individual IoT devices must obfuscate their pack-
ets prior to transmission in the presence of a local eavesdropper. We
study interesting privacy-bandwidth tradeoffs by formulating the
minimization of the on-average or worst-case bandwidth overhead
under given privacy levels as constrained linear or convex programs.
We empirically evaluate the optimal solutions on synthetic and real
data, and show how various user preferences of bandwidth-intensive
and low-bandwidth devices affect the privacy-bandwidth tradeoffs
differently. We believe that this work is a first step towards building
a comprehensive on-device traffic obfuscation system with strong,
formal and tunable privacy guarantees. The tradeoffs provide mean-
ingful system indications for designing future IoT networks.

2. SYSTEM MODEL

We model an IoT device’s outgoing packet stream as a discrete-time
sequence of variable-sized packets X1, Xo,..., X, where X; €
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X = {a1,az,...,a,x}; X is the set of all possible packet sizes
(e.g., in bytes) and we assume that a; < a2 < --- < a)x| without
loss of generality (w.l.o.g.). We think of the packets as indepen-
dent and identically distributed (i.i.d.) with distribution p, (z) on
X. Specifically, we assume that p,, comes from a family of possible
probability mass functions (PMFs) P = {p, };—1, and we denote
the prior probability that the IoT device generates packets from p,
as P, (X) £ P(X ~ p,). This family P can represent IoT device
types so that each v corresponds to a different type, or P can repre-
sent the operating states of a single IoT device so that v is the current
state. We assume P and P,, (X ) are known by both the system de-
signer and the adversary. When the device sends a packet with size
x € X over a wireless link, the eavesdropping adversary can ob-
serve x and infer something about p,,. Therefore, the privacy-aware
source must obfuscate x to conceal the true p, .

Packet Padding Obfuscator. Built on the idea of our previous
work [16], we design a packet obfuscator acting as a discrete mem-
oryless channel (DMC). This DMC defines a conditional probability
distribution ¢(Z|z) and randomly maps the original packet size x to
an obfuscated size & € X = {d1,da,. .., d\??\}; X is the set of all
possible obfuscated packet sizes and assuming di < dp < -+ <
d 2| (w.l.o.g.). To ensure no loss in data, we only allow the DMC to
pad the packets by restricting the structure of the channel matrix such
that ¢(#;]z:) = 0,Va; > 25,1 € [|X|],j € [|X]]. Particularly, if
X = X, the | X'|?-dimensional channel matrix ¢ will only have non-
zero entries in the upper triangle. In a special case where ¢ has all
ones in the last column and zeros elsewhere, it essentially pads all
the packets to the largest possible packet size d| 2| This guarantees
perfect privacy but meanwhile requires maximum extra bandwidth.
Our goal is to tune/optimize the transitional probabilities to trade off
the privacy level and bandwidth overhead.

2.1. Privacy Model

We require a quantifiable measure of privacy risk to meaningfully
protect privacy and trade off privacy and bandwidth. Differential pri-
vacy [12] has emerged over the last decade as a compelling frame-
work for measuring privacy risk in various applications. We use a
more stringent privacy model — local differential privacy (LDP) [17,
18] to protect individual IoT devices. They can obfuscate the packet
sizes prior to transmission by passing the packets through the afore-
mentioned channel ¢(&|z) while satisfying LDP.

Definition 1. A channel q : X — X satisfies e-local differential
privacy [17] if max {q(2|z)/q(£|%)} < €5, ¥(x,%,2) € X% x X.

LDP ensures that the distribution of the output & reveals limited
information about the input x: for any other input Z, the output under
T has a similar distribution to that under . Smaller € means greater
indistinguishability and hence less privacy risk. In our context, the
goal of designing an ¢-LDP packet obfuscator ¢ is to ensure that
the adversary’s likelihood of guessing that the device’s packet size
distribution was p,, over p,, does not increase, multiplicatively, more
than e after seeing the obfuscated packet size &. Formally,

PX ~p|X=3) _ P (X) . (\W'e [s]) 0
X - "\ vaex )

using Bayes’ rule and plugging in ¢(Z;|x;), we have

S () aldsle) _ (w,u’e}s]) o
S pur (@) - a(asle) — T\ Vi€ (1)

IA

We observe that this privacy model is the same as the distributional
privacy [19] in the case of discrete outcomes.
2.2. Bandwidth Overhead

We model the bandwidth overhead W after applying the channel ¢
in two ways: i) on-average, the expected number of bytes per packet
(over all priors P, (X) and types p,, Vv € [s]) needed to send the

obfuscated packets X, and ii) worst-case, the maximum expected
number of bytes per packet among all types p,, Vv € [s]. Formally,

i) Wavg(q) = ]EPPU (X), X~py, ¢(X|X) (X]

= Zu ZZ Zj P, v (X)pu(%)Q(iﬂxv)i’w (3)

11) Wworst (CI) = mj:lX ]EX’Vpuy Q(Xlx) [X]

= max ZZ Zj Pu(w:)q(Z]w:) “

3. OPTIMAL CHANNEL

Finding the optimal channel ¢(Z|z) given a fixed X can now be
solved by the following optimization problem:

r(I}i‘n) Wave(q) in (3) or Wiworst (¢) in (4) 5)
q(Z|x
st. 0<q(Zjlz:) <1, Vi,j (©6)
| 2] . .
> alEsle) =1, Vi @)
j=1
q(i;|xz) = 0, Va; > ‘%j (8)
q(&;|x;) satisfies (2) )

where the goal is to minimize the on-average or worst-case band-
width overhead subject to the privacy constraint (2). Constraints (6)
and (7) ensure that the mapping ¢(#|z) is a stochastic matrix, and
constraint (8) enforces the packet padding strategy.

Proposition 1. The optimization problem in (5)-(9) with objective
Waveg (q) or Weworst (q) is a linear or convex program, respectively.

Proof. The objective function Wayg(g) (3) is linear in ¢(#|z), and
Wayworst (q) (4) is convex in g(&|z) since point-wise maximum pre-
serves convexity [20]. The privacy constraint (2) is equivalent to

S o) — e @) - alagle) <0, (10)

i=1
Vi, € [s], Vj € [|X]], which imposes 5% x |X]| linear inequality
constraints on g(Z|x). Along with other linear constraints (6), (7)
and (8), the optimization (5)-(9) with objectives Wavg(q) and
Wworst (q) constitute a linear and convex program, respectively. [

The optimal channel given a fixed X can now be solved effi-
ciently by linear or convex programming. However, the size of X
can be arbitrarily large. We now show in the following proposition
that an optimal channel will actually have Xca.

Proposition 2. The optimal set of obfuscated packet sizes is a strict
subset of the set of original packet sizes, that X C X.

Proof. We first show that the optimal channel q‘X %121 will have
X C X. Suppose contrarily that ¥ = X U {dy}, where dj, ¢ X
has non-null probability in X'. With slight abuse of notation, we also
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Fig. 1: On-Average and Worst-Case Privacy-Bandwidth Tradeoffs. Each of the 4 subfigures on the top row compares the on-average tradeoffs
€-Wavg (qip) (solid line) and e-Wavg (qirn) (dotted line), under SAND, UNIF, and ROCK priors for the corresponding family of PMFs. Each
subfigure on the bottom row compares worst-case tradeoffs e-Wiorst (¢1,p) and e-Wivorst (qamn )> accordingly.

assume a; = d; < d < ai+1 = diy1,1 € {1,...,]|X| — 1}, and
let bk — 1 £ argmax;(d; < di) and g;,; 2 q(d;|as)-

We prove X cux by showing that removing d, from X, in
the act of merging the extra k-th column ¢.  with the (k — 1)-th
column gq. j—1, can further decrease the objectives in (5) without vi-
olating the privacy constraint (2). This merging in effect creates a
new channel qme\z where
?i,kfl = qi,k—1 *+ ik, Vi € [|X]]. an

di,k = 0,

The amount of bandwidth conservation going from ¢ to ¢ for any
packet size PMF p, is

AW (q,) £ Ep, 4[X] — Ep, 4[X] (12)
B9 xr

=>_ pwlai) <Zj:1 Gigdi =Y qz',jda) (13)

= Zipu(ai) [(qik—1 — @k—1)dr—1 + (qik — Gop)di]  (14)

:ZipV(ai)Qi,k(dk —di—1) > 0. (15)

We have (14) from (13) since the merging only affects the (k — 1)-
th and k-th columns. (15) results from (11) and that di—1 < dg.
Because Wavg(q) — Wavg(@) = Ep, (x) [AW(q,q)] > 0 and

Waworst (¢) — Wworst () = max, [AW (q,q)] > 0, we conclude
that removing d from X" can reduce the bandwidth in either case.

The privacy constraint (2), or equivalently (10), can be viewed
as s? constraints on each column j of the optimal channel ¢. Since
q differs from g only in the (k — 1)-th column . 1, showing that
q:,,—1 satisfies (10) is sufficient to prove that § is still e-LDP. This is
obvious because Y. ¢ Gik—1 =D, ¢ (¢i,k—1 + qi,x) < 0, where
¢ = py(ai) — epyr (@)

Now we show a; ¢ X by contradiction. Suppose that a; € X,
with padding-only mechanism, we have ¢1,1 = 1and ¢;;1 = 0,7 =
{2,...,|X|}. However, >, ¢ ¢in = pu(a1) — e“pyr(a1) < 0can

not hold for all v, " € [s]. This violates the privacy constraint (10),
and contradicts with ¢ being optimal. Combined with X C X, we
have X C X'\ {a1}, and therefore, ¥ C X. O

4. EXPERIMENTAL RESULTS

We experimented on synthetic data as well as packet size PMFs
measured from 3 smart home IoT devices (Nest Camera, Sense
Sleep Monitor and WeMo Switch) [21]. For IoT devices, we mea-
sured a total of 78 possible packet sizes (40 — 1500 bytes). For
synthetic data, we simulated Zipf and Poisson distributed packet
sizes with PMFs: Pzipe(k; 1, N) = (1/k*)/ S0 (1/n)" and
Proisson (k) = (A*/k!)e™>, where the Zipf PMF characterizes the
frequency of rank-k element out of a population of IV elements. We
assume that packet size ay has rank k, with k& € [N] = [|X]].
We choose the exponent € p = [5,1,0.01] for Zipf and
A € X = [0.5,3.5,5.5] for Poisson, and set the possible packet
sizestobe X = X = [2,4,8,16,32,64, 128, 256]. We also include
the mixture of Zipf and Poisson PMFs to represent the case in which
there are increased number of sources.

Privacy-Bandwidth Tradeoff. Now we have s = 4 families of
PMFs (IoT Devices, Zipf, Poisson and Mix). We want to study how
different types of prior assumptions affect the privacy-bandwidth
tradeoffs. We define 3 types of priors as follows:

e SAND: sand prior, with P,, (X) highest on the least-
bandwidth source and low on bandwidth-intensive sources
(e.g., we assume [0.8,0.1,0.1] on g = [5, 1, 0.01] for Zipfs);

e UNIF: uniform prior (e.g., we assume 3, £, 1] on p);

e ROCK: rock prior, with P, (X) highest on the source con-
suming the most bandwidth and low on low-bandwidth
sources (e.g., we assume [0.1,0.1,0.8] on ).

For different families of packet size PMFs and different priors,
we solve (5)-(9) by using linear programming (LP) and min-max
(MM) programming with respect to the Wavg (q) and Wiyorst (q) 0b-
jectives. Denote gi.p and gy as the optimal solutions accordingly.
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Fig. 2: Packet Size Histograms Before/After Obfuscation. We used the Wavg(q)—minimal channel g7, with privacy levels e = [2,0.5,0.01].

On the top row of Figure 1, we compare the tradeoffs, e-Wave (¢ip)
and e—Wavg(qf(,[M), between the privacy level € and the on-average
bandwidth. On the bottom row of Figure 1, we also compare the
tradeoffs, G‘Wworst(qﬁp) and e—Wworst(qj(lM), between the privacy
level € and the worst-case bandwidth. For ease of interpretation, we
set the y axis in the figures to be 5 = W /W, representing multiples
of the average source bandwidth (W = Ep, (x), x~p, [X])-

All curves suggest that more bandwidth provides better privacy
protection. In the low privacy region (¢ — 2), we need at least
the average source bandwidth (8 — 1) using packet padding strat-
egy. To guarantee perfect privacy (e = 0) for IoT devices under
UNIF prior, we see that about twice the average source bandwidth
is needed (8 ~ 2). For any particular family of packet size PMFs,
we see that SAND > UNIF > ROCK in terms of extra bandwidth
requirement. Put in another way, if a user tends to use bandwidth-
intensive devices more often, then that amount of bandwidth is suf-
ficient to also conceal other low-bandwidth devices. Contrarily, a
lot more extra bandwidth is required to hide a bandwidth-intensive
device used only once in a while. This also explains the increasing
gap between Wayg (¢ip) and Waye (gin) as the prior changes from
ROCK to UNIF and then to SAND.

Since Zipf PMFs have “heavy tails” on large packet sizes, they
consume higher bandwidth than Poisson PMFs. However, by aug-
menting the Zipf family with Poisson PMFs, the resulting Mix fam-
ily consumes less extra bandwidth than Zipf alone under the SAND
prior. Essentially, it becomes “easier”” to hide a bandwidth-intensive
device among increased number of low-bandwidth devices. How-
ever, this does not hold under ROCK and UNIF priors because we
are merely adding in more devices with high bandwidth demands.

Applying Packet Obfuscation Channel. We pass the 3 IoT de-
vices’ packet streams through the optimal obfuscation channel ¢ p
with increasing privacy levels (¢ = [2,0.5,0.01]) and show the
corresponding obfuscated packet size histograms in Figure 2b, 2¢
and 2d. Comparing to the original (Figure 2a), we see that as € de-
creases to 0.01, the histograms of obfuscated packet sizes become
increasingly identical. In light of this, one can alternatively design a
2-step packet obfuscation scheme for perfect privacy: i) choose a tar-
get packet size PMF, and ii) find the mapping from the source PMFs
to the target PMF. Wright et al. [9] deals with ii) by optimally mor-
phing one class of traffic to look like a target class. However, they
didn’t discuss the issue of how to choose the optimal target PMF.
Our solution avoids solving 1) explicitly.

Note in Figure 2 that the output space after obfuscation doesn’t
contain the smallest packet size anymore (the first bin of histogram
disappeared). This validates a1 ¢ X in Proposition 2. Addition-
ally, the frequencies of moderate-to-large packet sizes (> 500 Bytes)
don’t change by much before and after obfuscation, whereas the

number of small packet sizes (< 200 Bytes) decreases the most as €
decreases. The obfuscator seems to “only” pad the small packets to
larger sizes. We also observed this from the structure of the optimal
channel matrices that they have ones in the diagonal entries corre-
sponding to moderate-to-large packet sizes, and the other non-zero
entries only appear in the top few rows corresponding to small packet
sizes. Exploring the optimal structural properties of these channel
matrices can potentially reduce the complexity of solving (5)-(9).

Sequential Composition Attack. The privacy model in (2) as-
sumes that the adversary only observes a single packet size to make
inference about its source distribution (p, ). This assumption is ade-
quate for event-driven 10T devices, where the device only sends out
a packet when it senses some event. It may become weak, however,
if the device stays in the same state for longer time, during which
multiple packets are sent out (which can be viewed as i.i.d. sam-
ples from the same p, ). A dedicated adversary can then observe N
i.i.d. samples to better infer about the device type/state. Using our
current privacy model, the overall privacy leakage becomes € - N by
the sequential composition [22] of differential privacy, which grows
linearly with the sample size. To address this, one can extend the
privacy model (2) by changing the source symbols in X to high-
dimensional tuples in X™. However, the computational complexity
of the problem now grows exponentially with m. We believe that
by exploiting the aforementioned structural properties of the opti-
mal channel, the exponential complexity can be greatly reduced. We
defer a detailed investigation to the full version of this work.

5. CONCLUSIONS AND FUTURE WORK

In this work, we designed a packet-size obfuscation mechanism un-
der LDP and empirically showed its effectiveness for hiding the
packet size PMFs from different smart home IoT devices. The mech-
anism is also generally applicable in other IoT scenarios. This is a
first step towards understanding and defending against more sophis-
ticated traffic analysis attacks with strong privacy guarantee. Under
various assumptions on the priors and source PMFs, we showed in-
teresting fundamental tradeoffs between the privacy level and band-
width requirement. These tradeoffs can advise users with different
bandwidth limitations to optimally choose their privacy parameter.

One future extension is to also consider timing side-channel at-
tacks. Privatizing the network traffic in this regard should also re-
quire extra delay. It would be interesting to see the impact of both
bandwidth and delay, when used complimentarily, on the rate of pri-
vacy leakage.

Acknowledgements. Special thanks to Noah Apthorpe, Dillon
Reisman and Nick Feamster for sharing the network traffic data of
smart home IoT devices.
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