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ABSTRACT

Cyberbullying has emerged as a serious societal and public health
problem that demands accurate methods for the detection of cyber-
bullying instances in an effort to mitigate the consequences. While
techniques to automatically detect cyberbullying incidents have been
developed, the scalability and timeliness of existing cyberbullying
detection approaches have largely been ignored. We address this
gap by formulating cyberbullying detection as a sequential hypothe-
sis testing problem. Based on this formulation, we propose a novel
algorithm designed to reduce the time to raise a cyberbullying alert
by drastically reducing the number of feature evaluations necessary
for a decision to be made. We demonstrate the effectiveness of our
approach using a real–world dataset from Twitter, one of the top five
networks with the highest percentage of users reporting cyberbully-
ing instances. We show that our approach is highly scalable while
not sacrificing accuracy for scalability.

Index Terms— cyber harassment, social media, optimization al-
gorithm, selection process, classification

1. INTRODUCTION

Bullying, once limited to physical spaces (e.g., schools, workplaces
or sports fields) and particular times of the day (e.g., school hours),
can now occur anytime, anywhere. Cyberbullying can take many
forms, however, it typically refers to repeated and hostile behavior
(e.g., hurtful comments, videos and images) performed in an effort
to intentionally and repeatedly harass or harm individuals [1]. The
consequences can be devastating: learning difficulties, psycholog-
ical suffering and isolation, escalated physical confrontations, sui-
cide. Statistics are staggering: over half of adolescents have engaged
in or have been cyberbullied, while 10% – 20% experience it daily1.
The seriousness of the problem has led to a number of approaches
to detect abusive behavior in online social networks based on text
features, such as N–grams [2, 3, 4, 5], part–of–speech tags [2, 5, 6],
statistical text–based features [7, 3, 6] including density of profane
words, and word embeddings [5, 8, 9]. However, two key practical
issues have thus far been largely ignored. First, cyberbullying de-
tection solutions must be scalable to the staggering rates at which
content is generated (e.g., 350, 000 tweets per minute2). Second, the
timeliness of cyberbullying detection is critical in developing miti-
gation strategies [10, 11, 12].

1Bullying Statistics: http://www.bullyingstatistics.org/
category/bullying-statistics

2Twitter Usage Statistics: http://www.internetlivestats.com/
twitter-statistics/

In this paper, we formulate cyberbullying detection as a sequen-
tial hypothesis testing problem, and propose a novel algorithm de-
signed to reduce the time to raise a cyberbullying alert by minimiz-
ing the number of feature evaluations necessary for a decision to be
made. We show that the optimal strategy in this decision problem
is an optimal stopping rule: our algorithm sequentially reviews fea-
tures starting from the most informative, and decides when to stop.
Once stopped, it can classify a message as cyberbullying or non–
cyberbullying based on the features examined thus far. The optimal
number of features used is a function of the cost corresponding to
the time and effort spent evaluating each feature, and the classifica-
tion quality. A key property of our solution is that in accomplishing
these two goals it does not adversely impact classification quality.
We demonstrate the utility, scalability and responsiveness of our pro-
posed solution in a large–scale real–world dataset obtained from the
Twitter online social network.

The remainder of this paper is organized as follows. In Section 2,
we formulate the problem and define our optimization function. In
Section 3, we derive the optimal stopping and classification strate-
gies. In Section 4, we propose a novel algorithm for timely cyber-
bullying detection in online social networks. Section 5 describes our
evaluation methodology and results on a real–world Twitter dataset.
We conclude the paper and discuss possible future work in Section 6.

2. PROBLEM FORMULATION

In this Section, we formalize the cyberbullying detection problem.
We describe our model and define our optimization function.

2.1. Description

Automatic detection of cyberbullying requires computational ap-
proaches that can take advantage of multifaceted attributes, both lin-
guistic and non–verbal. In order to reduce the burden on human
experts, we propose a framework that automatically computes the
probability of a message to be indicative of harassment with high ac-
curacy while accounting for the effort of the framework in improving
its chances of reaching a highly accurate conclusion.

We use a general data representation, applicable to a wide variety
of social media platforms as follows. We consider a set of messages
M and a set of users U . Each message m ∈ M is sent from user
s ∈ U to r ∈ U . Each message is described by a set of feature
occurrences f(m) = {y1, y2, . . . , yK}, whereK is the total number
of features. Each feature denotes the existence of some descriptor in
the message (e.g., the presence of profanity). An equivalent framing
is that the value of feature yn ∈ {0, 1}, where n = 1, . . . ,K, is
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determined by comparing yn with empirically determined thresholds
that separate bullying from non–bullying messages.

Each message m can belong to one of two classes, i.e., B for bul-
lying, and N for non–bullying. We pose the challenge of automatic
cuberbullying detection of each message m sent from user s to r as
a sequential hypothesis testing problem and use an additive feature
score to encode our belief thatm is a bullying instance. Specifically,
in our hypothesis testing formulation, only two hypotheses exist: (i)
HB, which denotes the true hypothesis thatm is a bullying message,
and (ii) HN , which represents the case where m is a non–bullying
message. For each feature yn, the probability p(yn|HB) (similarly
p(yn|HN )) of the evaluation of the nth feature to produce outcome
yn when the true hypothesis is HB (similarly when the true hypoth-
esis is HN ) is empirically computed. Similarly, the a priori proba-
bility P (HB) = p of m being a bullying message is also estimated
empirically. The probability ofm being a non–bullying message can
be computed as P (HN ) = 1−p. In our experiments, we use widely
popular text and emotion features [13, 14, 7]. Note that, multiple
messages can be sent from or to a user, and more than one messages
can involve the same pair of users (e.g., user Alice sents 5 messages
to Bob, and 1 message to John, and receives 3 messages from Mary).

Fig. 1. Posterior probability evolution as more features are ex-
tracted and evaluated for a cyberbullying (lower plot) and a non–
cyberbullying message (upper plot).

To calculate the bullying belief for m, the framework evaluates
features f(m) sequentially as illustrated in Fig. 1. At each step, the
framework has to select between stopping and continuing the evalu-
ation process based on the accumulated information thus far and the
cost of reviewing additional features. The cost coefficient cn > 0,
where n = 1, . . . ,K represents the value of time and effort spent
evaluating the nth feature. We also consider misclassification costs
Cij > 0, i = B,N , j = 1, . . . , L, where Cij denotes the cost of
selecting possibility j when the true hypothesis isHi, and L denotes
the number of decision choices (e.g., bullying or non–bullying). We
factor misclassification costs into our approach to quantify the rela-
tive importance of detection errors. Note that a model that includes
costs may not produce fewer errors than one that does not, and may
not rank any higher in terms of overall accuracy, but it is likely to
perform better in practical terms because it has a built–in bias in fa-
vor of less expensive errors towards one class versus another.

We now formally describe our proposed sequential evaluation pro-

cess to minimize the number of features used to accurately classify
each message m. Specifically, our proposed sequential evaluation
process comprises a pair (R,DR) of random variables. Random
variable R takes values in the set {0, . . . ,K}, and indicates the fea-
ture that the framework stops at. Hence it is referred to as stopping
time in decision theory. Random variable DR denotes the possibil-
ity to select among L possible choices. It depends on R and takes
values in the set {1, . . . , L}. As an example, consider a case where
L = 3. In this context, DR = 1 corresponds to “bullying message”,
DR = 2 denotes “normal message”, and DR = 3 indicates “human
expert inspection required”. Assuming that the random variables yn
are independent under each hypothesis Hi, i = {B,N}, the condi-
tional joint probability of {y1, . . . , yn} is given as follows:

P (y1, . . . , yn|Hi) =

n∏
k=1

p(yk|Hi), i = B,N . (1)

Both the decision to stop at stage n (i.e., the event {R = n}), and
the selection of possibility j (i.e.,DR = j) depend only on the accu-
mulated information {y1, . . . , yR} by the stopping time R. Equiva-
lently, features that may be examined in the future are not used.

2.2. Optimization Setup

Our goal is to use the least number of features for detection of cy-
berbullying messages without sacrificing accuracy. To minimize the
number of features considered, the stopping time R and the classifi-
cation rule DR have to be selected. To this end, we first define the
following cost function

J(R,DR) = E
{ R∑
n=1

cn

}
+

L∑
j=1

∑
i=B,N

CijP (DR = j,Hi). (2)

The first expression in the cost function regularizes the number of
features, whereas the second expression penalizes the average cost
of our classification rule. To prove that the optimal strategy is to stop
at stage R, we must first show how to obtain the optimum classifi-
cation rule DR for any given stopping time R. Once the optimal
classification rule has been established, the resulting cost becomes
only a function of R, and can thus be optimized with respect to R.

Since DR depends only on the accumulated information
{y1, . . . , yR} by stopping time R, the a posteriori probability πn ,
P (HB|y1, . . . , yn) must be updated as more features are extracted
and evaluated. Lemma 1 shows how to compute πn iteratively.

Lemma 1 The posterior probability at stage nwhere the nth feature
is extracted and evaluated to generate outcome yn is

πn =
p(yn|HB)πn−1

πn−1p(yn|HB) + (1− πn−1)p(yn|HN )
, (3)

where πn−1 is the posterior probability at stage n− 1, and π0 = p.

Using Lemma 1 and the fact that xR =
∑K
n=0 xn1{R=n} for

any sequence of random variables {xn}, where 1A is the indicator
function for event A (i.e., 1A = 1 when A occurs, and 1A = 0
otherwise), the average cost in Eq. (2) can be written compactly as:

J(R,DR) = E
{ R∑
n=1

cn

}

+ E
{ L∑
j=1

(
CBjπR + CNj(1− πR)

)
1{DR=j}

}
. (4)
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3. OPTIMAL STRATEGIES

Here, we solve the optimization problem defined in the Section 2.2
to derive the optimal stopping and classification strategies.

3.1. Classification Strategy

In order to obtain the optimal classification ruleDR for any stopping
time R, an independent of DR lower bound for the second part of
Eq. (4) is needed. Since DR contributes only to this portion of the
average cost, the optimal classification rule DR for a given stopping
time R can then be derived. Theorem 2 provides such bound.

Theorem 2 For any classification rule DR given stopping time R,

L∑
j=1

(
CBjπR + CNj(1− πR)

)
1{DR=j} > g(πR), (5)

where g(πR) , min16j6L
[
CBjπR +CNj(1− πR

)]
. The optimal

rule is defined as follows:

DoptimalR = arg min16j6L

[
CBjπR + CNj(1− πR

)]
. (6)

From Theorem 2, we deduce that J(R,Doptimal
R ) 6 J(R,DR),

since the optimal classification rule results to the smallest average
cost. Based on the last observation, Eq. (4) can be written as follows:

J̃ , J(R,Doptimal
R ) = min

DR

J(R,DR) = E
[ R∑
n=1

cn + g(πR)

]
,

(7)
which depends only on the stopping time R.

3.2. Stopping Strategy

The solution for optimizing J̃ with respect to R can be determined
by solving the optimization problem

min
R>0

J̃(R) = min
R>0

E
[ R∑
n=1

cn + g(πR)

]
, (8)

which constitutes a classical problem in optimal stopping theory for
Markov processes [15]. Since every stopping timeR can take values
in {0, 1, . . . ,K}, the optimum strategy will consist of a maximum
of K + 1 stages. In addition, Bellman’s principle of optimality [16]
states that the solution we seek must also be optimum, if instead
of the first stage we start from any intermediate stage and continue
toward the final stage. We derive our optimal stopping strategy as
described in Theorem 3 based on the above principle.

Theorem 3 For n = K − 1, . . . , 0, the function J̄n(πn) is related
to J̄n+1(πn+1) through the equation:

J̄n(πn) = min

[
g(πn), cn+1 +

∑
yn+1

An(yn+1)×

J̄n+1

(
p(yn+1|HB)πn
An(yn+1)

)]
, (9)

where An(yn+1) , πnp(yn+1|HB) + (1 − πn)p(yn+1|HN ) and
J̄K(πK) = g(πK).

The optimal stopping strategy derived by Eq. (9) has a very
intuitive structure, i.e., stop at the stage where the cost of stop-
ping is smaller than the cost of continuing. Specifically, at
each stage n, our method faces two options given πn: (i) stop
evaluating features and select optimally between the L possibil-
ities, or (ii) continue and evaluate the next feature. The cost
of stopping is g(πn), whereas the cost of continuing is cn+1 +∑
yn+1

An(yn+1)J̄n+1

(
p(yn+1|HB)πn

An(yn+1)

)
.

Finally, we want to emphasize the high scalability of our ap-
proach. Indeed, the K functions J̄n(πn), n = 0, 1, . . . ,K − 1,
are calculated using Eq. (9) by quantizing the interval [0, 1] and
computing the corresponding values. This computation relies only
on a priori information to produce a K × d matrix, where each
row corresponds to the value of the J̄n(·) function for different
values of πn ∈ [0, 1]. This computation needs to be performed
only once and can be pre–calculated. Furthermore, probabilities
p(yn|HB), p(yn|HN ), n = 1, . . . ,K, yn ∈ {0, 1}, are empirically
estimated from training data as follows:

p̂(yn|HB) =
N(yn,B)∑
y′n
N(y′n,B)

and p̂(yn|HN ) =
N(yn,N )∑
y′n
N(y′n,N )

,

(10)
whereN(yn,B) andN(yn,N ) denote the number of messages that
give rise to outcome yn after extracting and evaluating the nthe fea-
ture and constitute cyberbullying and non–bullying messages, re-
spectively. We also estimate the a priori probabilities as follows:

[P (HB), P (HN )]T = [p, 1− p]T =

[
NB

NB +NN
,

NN
NB +NN

]T
,

(11)
where NB and NN denote the number of messages in the training
set that constitute cyberbullying and non–bullying messages, respec-
tively. Hence the complexity of calculating J̄n(πn) is independent
from the actual number of messages, which can be huge (e.g., 350K
tweets per minute).

4. AVOID ALGORITHM

In this section, we describe AvOID, a novel algorithm for optimal
online cyberbullying detection. AvOID relies on Theorems 2 and 3
to timely and optimally identify cyberbullying content in messages
exchanged in online social networks.

In the online cyberbullying detection optimization problem, fea-
tures about a message m are examined sequentially ordered one
after another. The ordering of features is crucial to the computa-
tion of the optimum average cost J̄0(π0). Consider for example
the case of two features f(m) = {y1, y2}, where y1 is the num-
ber of bad words, and y2 is the number of exclamation marks in
a message. The number of bad words has been shown to be more
informative in discriminating bullying from non–bullying content
[1, 13]. Thus, if AvOID was to examine y2 first, it would be very
probable that it would need to evaluate y1 as well to improve its
chance of accurate classification. On the other hand, if y1 was to
be evaluated first, it could be possible for AvOID to reach a deci-
sion using one feature only. To avoid the computational complexity
of evaluating all K! possible orderings of features, we propose a
simple heuristic. Specifically, we sort features in increasing order
of cn(p(yn = 0|HB) + p(yn = 1|HB)). We select this heuristic
due to its ability to promote low cost (cn) features that at the same
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Table 1. Features considered in this work.
Type Features
Text
(in total:
8)

# of exclamation marks, # of uppercase letters, #
of emoticons, # of acronyms, # of second person
pronouns, # of curse hashtags, # of curse words,
density of curse words

Emotion
(in total:
3)

mean value of valence, arousal and dominance re-
spectively

time result in few errors (p(yn = 0|HB) + p(yn = 1|HB)). Our
framework can be easily extended to accommodate other heuristics.

Initially, the posterior probability π0 is set to the prior probability
p of a message being an instance of cyberbullying, and the two terms
inside the minimization of Eq. (9) are compared. If the first term is
less than or equal to the second term, AvOID stops and classifies
the message based on the optimal strategy of Eq. (6). Conversely,
when the first term is larger than the second term, the first feature is
extracted from the message and evaluated; as a result, a comparison
outcome y1 is generated and used to update the posterior probability
π0 to π1 using the update rule of Eq. (3). Consider for example
the case where the first feature denotes the number of bad words in
the message. This number is computed and a 0 or 1 is returned to
indicate the evaluation outcome. AvOID repeats these steps until
either it decides to stop, at which case it classifies the message using
< K features, or all features are computed and examined, in which
case the message is classified using all K features.

5. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the perfor-
mance of AvOID on the detection of cyberbullying messages. We
evaluate our algorithm on a real–world Twitter dataset consisting of
10, 600 tweets, half of which constitute harassment tweets. In partic-
ular, we construct this dataset by extracting 5, 300 manually labeled
harassment tweets from [17] and 5, 300 randomly selected normal
tweets from the Twitter corpus of the CAW 2.0 dataset. We focus on
L = 2 choices (i.e., cyberbullying and non–cyberbullying content)
and extract 11 features, shown in Table 1. To extract the number
of acronyms, we created a lexicon of offensive acronyms 3, while
features curse hashtags and words were extracted based on a curse
word lexicon4. The mean values of valence, arousal and dominance
were extracted based on [18]. We discretize the values of the above
features to 0 and 1 based on thresholds empirically determined from
their histograms such that 90% of the mass of the observations for
each class lies above/below this threshold depending on the class of
interest. Five–fold cross validation was performed, and experiments
were conducted for different values of cn, CB2 and CN1.

Fig. 2 illustrates the error probability achieved by AvOID as the
average number of features used by the algorithm increases. Results
are reported for constant misclassification costs (i.e., CB1 = CN2 =
0 and CB2 = CN1 = 1) and for varying values of cn ∈ [0, 10]
when all features have the same cost (i.e., cn = c). The error prob-
ability achieved by a non–sequential hypothesis testing method that
uses all 11 features is also included for comparison. As expected,
when the average number of features used is small, AvOID exhibits

3https://www.noslang.com/dictionary/
4http://www.cs.cmu.edu/biglou/resources/bad-words.txt

Fig. 2. Probability of error as a function of the expected number of
features. Inset shows the distribution of number of features used by
AvOID to classify messages for an average of ∼ 4 features.

large error probability. However, as this number increases, perfor-
mance improves dramatically. In fact, AvOID attains approximately
the same error probability as the non–sequential hypothesis testing
method using only R = 4 features. This corresponds to a 64%
reduction on average in the number of features used without sacri-
ficing accuracy. Different values of costs cn and misclassification
costs CB2 and CN1 result in different error probability values, while
trading–off false alarm and misdetection probabilities. The inset in
Fig. 2 shows the number of features used by AvOID to classify mes-
sages for each tweet in the testing dataset when R = 4.02 features.
In most cases, 3 to 4 features are enough to reach a classification
decision.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a sequential hypothesis testing formulation was pro-
posed to address the problem of cyberbullying detection. More
specifically, each message can belong in one of two classes (i.e.,
cyberbullying or normal) and the goal is to decide when to stop ex-
tracting and evaluating features from the message and declare a de-
cision. To this end, an optimization function was defined in terms of
the cost of features and the average cost of the classification strategy
and the optimal solution was determined. Our proposed algorithm
implements this optimal solution and achieves a 64% reduction on
the average number of features used to reach a classification decision
without sacrificing accuracy. In our ongoing work, we focus on text
and emotion features of messages, as such features have been shown
to being informative for cyberbullying classification. In future work,
we plan to extend our framework so as to exploit user, network and
content information as well.
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