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ABSTRACT
Information about an image’s source camera model is important
knowledge in many forensic investigations. In this paper we pro-
pose a system that compares two image patches to determine if
they were captured by the same camera model. To do this, we
first train a CNN based feature extractor to output generic, high
level features which encode information about the source camera
model of an image patch. Then, we learn a similarity measure that
maps pairs of these features to a score indicating whether the two
image patches were captured by the same or different camera mod-
els. We show that our proposed system accurately determines if two
patches were captured by the same or different camera models, even
when the camera models are unknown to the investigator. We also
demonstrate the utility of this approach for image splicing detection
and localization.

Index Terms— Multimedia Forensics, Camera Model Identifi-
cation, Forensic Similarity, Image Splicing

1. INTRODUCTION

Digital images are used in many scenarios, such as in news report-
ing, courts of law, government intelligence, as well as in commu-
nication on variety of social media platforms. However, modern
software makes it easy for images to be manipulated or their source
to be masked. For example, it is common that images downloaded
from online databases, such as Facebook, have their source masked
through metadata removal. To address this, researchers have devel-
oped a number of multimedia forensic techniques that are used to
verify the source and authenticity of digital images [1].

One important multimedia forensics task is camera model iden-
tification, where the camera model that was used to capture an image
is identified. A variety of techniques exist for camera model identi-
fication [2]. These techniques employ a range of features including
CFA demosaicing artifacts [3–7], sensor pattern noise [8], local bi-
nary patterns [9], noise models [10], and chromatic aberration [11].
More recently, convolutional neural networks (CNNs) have been
shown to be powerful tools for camera model identification [12–16].

While these approaches for camera model identification are ef-
fective, a major drawback with many approaches is that they assume
a closed set of camera models. That is they require prior knowledge,
i.e. training data, from a source camera model in order to accu-
rately identify images captured by that model. However, given the
large number of camera models that exist, it is often unlikely that
the camera model of an image under investigation exists within a
training set. In many cases it is not feasible to scale an identification
system to contain large numbers of training models.

This material is based upon work supported by the National Science
Foundation under Grant No. 1553610.

Furthermore, in many scenarios an investigator may not be con-
cerned with the exact camera model that was used to capture an im-
age. Such scenarios include verifying whether a database of im-
ages were taken by the same camera model, discovery of intellec-
tual property theft (e.g. unauthorized use of proprietary demosaicing
strategies), or determining whether a splicing forgery has occurred
within an image. When detecting splicing operations, camera model
identification features can be used to detect when a spliced image
is a composite of image content from two different camera mod-
els [17, 18]. Recent work by Bondi et al. shows that the outputs
from a CNN-based camera model identification system can be iter-
atively clustered to detect and localize image splicing [19]. They
found their method to be effective even when the spliced image does
not contain content from camera models used to train the system.

In this paper, we propose a new system that determines if two
image patches are captured by different camera models or from the
same camera model. Our approach is different from camera model
identification in that it does not determine the exact camera model
that was used to capture either patch. The power of our proposed ap-
proach is that it is able to compare camera models that were not used
to train the system. This allows an investigator to learn important
information about images captured by any camera, and isn’t limited
by the set of camera models in the investigator’s database.

To accomplish this, we develop a measure that describes the sim-
ilarity between the camera models that were used to capture two
image patches. We do this by first learning a CNN-based feature
extractor that outputs generic, high level features useful for camera
model identification. Then, we train a similarity network that maps
pairings of these features to a score that indicates whether the two
image patches were captured by the same camera model or two dif-
ferent camera models. We experimentally show that our proposed
approach effectively differentiates between camera models, even if
the source camera models were not used to train the system. Addi-
tionally, we show an example that demonstrates the promise of this
approach for detecting an localizing image splicing manipulations.

2. PROBLEM FORMULATION & SYSTEM OVERVIEW

There are many scenarios where an investigator may wish to know
information about the source camera model of an image, but may not
have sufficient training data to identify the true source. To address
this, we propose a method that compares two image patches, and
renders a decision about whether the source camera models of these
patches are the same or different. This comparison is performed
without needing training information from the source camera model
of either patch. This approach provides less information about the
true camera model than a camera model identification method, but
it allows an investigator to gain important information about images
that are sourced from any camera model, not just those belonging to
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an investigator’s training set.
We assume that an investigator has access to a set of camera

models, referred to as known camera models, from which they can
gather training images. However, the investigator may be presented
with images sourced from camera models that do not belong to this
set, referred to as unknown camera models. As a result, it is impor-
tant that our proposed system be able to learn a similarity measure
from images belonging to known camera models, and also effec-
tively compare images belonging to unknown camera models.

Our proposed approach compares two image patches and deter-
mines whether the source camera models are different or the same.
To do this, we develop a comparison function C : X× X→ {0, 1},
where X is the space of image patches. The mapping is such that for
two inputs X1 ∈ X, X2 ∈ X, the comparison function will map to
either 0 or 1. An output of 0 indicates that the source camera models
of the two image patches are different, and an output of 1 indicates
that the source camera model is the same, i.e.

C(X1, X2) =

{
0 if X1, X2 from different camera models,
1 if X1, X2 from the same camera model.

(1)

This problem is tackled in three steps. First, a feature extractor
function f : X → RN is learned that maps an input image patch
X ∈ X to an N-dimensional feature space, which encodes high
level camera model information. Next, a feature similarity mea-
sure S : RN × RN → [0, 1] is learned that maps pairs of features
to a space bounded by 0 and 1, with 0 indicating that the source
camera models are dissimilar and 1 indicating that they are similar.
Finally, this measure is compared to a threshold η to decide whether
the source camera models are the same or different.

The overall system,

C(X1, X2) =

{
0 if S(f(X1), f(X2)) ≤ η
1 if S(f(X1), f(X2)) > η

, (2)

is a combination of these three steps. The system inputs two image
patches and maps each to a feature space that encodes high-level
camera model information. Then, the pair of features are mapped
to an output score indicating the similarity of their source camera
models which is finally compared to a threshold.

3. PROPOSED APPROACH

To create our proposed system, we first train a convolutional neural
network (CNN) to learn a feature extractor that produces generic,
high-level features from image patches that are useful for camera
model identification. These features are related to components of
the image capturing pipeline that uniquely identify different camera
models. Then, a similarity network is trained using pairs of these
features to learn a similarity measure. The similarity network is a
multilayer neural network that first maps the extracted features to
a new feature space. It then compares the newly mapped features
to each other to finally render a decision on whether the two input
image patches are sourced from the same or different camera models.
A view of the overall network architecture is shown in Fig. 1.

The whole system is learned in two phases. In the first learn-
ing phase, called Learning Phase A, the feature-extractor network is
trained to identify a set of camera models A. Then, during the sec-
ond learning phase, called Learning Phase B, the similarity network
is trained to learn similarity between pairs of high-level features ex-
tracted from a second set of camera models B. The camera model
setsA and B are disjoint to ensure that the similarity network learns
to differentiate camera models that have not been learned by the fea-
ture extractor, including unknown camera models.
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Fig. 1. Proposed system architecture.

3.1. Feature extractor - Learning Phase A
The first step in our approach is to learn an extractor for generic,
high-level features that encode camera model information. To do
this, we train a convolutional neural network (CNN) to identify cam-
era models from image patches, following the approach in [13]. This
training is called Learning Phase A. After training, a feature repre-
sentation f(X) of an image patch is extracted by feeding forward
the patch X through the network, then extracting the neuron val-
ues, pre-activation, of a high-level fully connected layer. The feature
representation f(X) corresponds to a generic, high-level encoding
of the patch’s source camera model.

The feature extractor network, depicted on the left in Fig. 1,
contains a constrained convolutional layer followed by four convo-
lutional layers, labeled conv1-4. Each of the four non-constrained
layers is composed of batch normalization, hyberbolic tangent ac-
tivation function, and pooling steps. The constrained convolutional
layer, introduced in [20], contains 3 kernels each of size 5x5. A
constraint is placed on weights w for each kernel in the constrained
layer such that {

w(0, 0) = −1∑
(l,m)6=(0,0) w(l,m) = 1

. (3)

That is, the constrained layer has kernels where the central value is
-1, and the rest of the weights sum to 1. This constrained convo-
lutional layer roughly corresponds to a prediction error filter, which
jointly suppresses image content while allowing the network to learn
camera model related pixel value dependencies introduced by the
camera’s image processing pipeline [16]. Details of the exact pa-
rameters of this network can be found in [13].

Following the convolutional layers are a series of 2 fully-
connected neuron layers, each with 200 neurons that have hyberbolic
tangent activation. These fully connected layers are labeled fc a1
and fc a2 in Fig. 1. A final fully-connected layer with |A| neurons
and a softmax is used to identify the input camera model, where |A|
is the number of camera models in the training camera model setA.

To extract features f(X) from an image patchX , we feedX for-
ward through the trained network and record the neuron values, pre-
activation, of layer fc a2. The feature vector f(X) has dimension
200 and encodes information about the source camera model of X .

3.2. Similarity network - Learning Phase B
The second step of our approach is to map pairings of the extracted
features to a similarity score that indicates whether a pair of input im-
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Fig. 2. Source comparison accuracy. The triangular matrices show rates of correctly detecting two patches as sourced from different camera
models. The columns labeled “Self” show rates of correctly detecting two patches as sourced from the same camera model. Results of our
proposed method are on the left. On the right, we compare to an approach adapted from Bondi et al. [19].

age patches are sourced from different camera models or the same
model. To do this, we train a multilayer neural network to com-
pare pairs of features that are extracted from the feature extractor
described in Sec. 3.1. We call this network a similarity network.
The construction of this network is modeled after image comparison
neural networks in [21–23] called “Siamese” networks.

The architecture for this similarity network is depicted in Fig. 1
on the right. To start, we take two copies the pre-trained feature ex-
tractor network learned in Learning Phase A. The extracted features
f(X1) and f(X2) from two image patches are used as inputs to the
similarity network. The features f(X1) and f(X2) are separately
connected to two layers fc b1 and fc b2. Both layers contain 1024
neurons with a parametric ReLU activation function. These layers
learn to map the input features to a new feature space. During train-
ing, the weights are shared between fc b1 and fc b2.

Then, layers fc b1 and fc b2 are both fully connected to a single
layer of neurons, labeled fc b3 in Fig. 1. This layer contains 64 neu-
rons, each with parametric ReLU activation. This layer of neurons is
then fully connected to a single neuron with sigmoid activation. The
activation value of this neuron corresponds to the similarity value
S(f(X1), f(X2)) in Eq. (2). An activation value above a thresh-
old η = 0.5 indicates that the pair of input patches X1 and X2 are
captured by the same camera model.

During Learning Phase B, the similarity network is trained using
pairs of image patches with labels that correspond to whether the
patches were captured by different camera models (0) or the same
camera model (1). To ensure that the similarity network learns to
compare camera models that are unknown, the set of camera models
used in Learning Phase B is disjoint to the set of camera models
used in Learning Phase A. Training is performed through iterative
back propagation with binary cross entropy loss. During training, the
weights of the feature extractor network are frozen, and only weights
in the similarity network are learned. Additionally, 50% dropout is
used on the output of layers fc b1 and fc b2 to help prevent over-
fitting. Together, the feature extractor and similarity network form
a full system, which inputs two patches and outputs a decision on
whether they are captured by the same or different camera models.

Additionally, to make a decision on an image patch we require
that it have an entropy value above a certain threshold. This is done
to ensure that each patch contains sufficient texture information to
effectively encode its source camera model. Entropy h is defined by
h = −

∑255
k=0 pk ln (pk), where pk is the proportion of pixels in the

patch that are of value k. Here, entropy is measured in nats.

4. EXPERIMENTAL RESULTS

To assess the efficacy of our approach, we conducted two exper-
iments that test our sytem under various investigation scenarios.
To do this, we started with a database of images from 65 camera
models, of which 20 are from the publicly available Dresden Im-
age Database [24]. The remaining 45 camera models are from our
own database composed of point-and-shoot, cellphone, and DSLR
cameras. For each camera model in our database, we collected 300
images with diverse and varied scene content. The set of all camera
models were split into 3 disjoint sets; 40 camera models were placed
in set A, 20 different models in set B, and the remaining 5 in set C.

The feature extractor network was trained (Learning Phase A)
using image patches from camera models in A. For each cam-
era model we used 50,000 unique non-overlapping patches of size
256× 256, with locations chosen at random, yielding 2,000,000 to-
tal training patches. Only the green color channel was used. The
network was trained using stochastic gradient descent for 30 epochs,
with an initial learning rate of 0.001 decreased by a factor of 2 every
3 epochs, decay of 0.0005, and momentum of 0.9. Training of the
feature extractor was performed using Caffe on a GTX 1080TI GPU.

Next, the similarity network was trained (Learning Phase B),
using features extracted from image patches sourced from camera
models in B. For each camera model, we used 20,000 unique non-
overlapping patches, chosen at random, to extract features yielding a
total of 400,000 training patches. As described in Sec. 3.2, only fea-
tures from image patches whose entropy was greater than 4 nats were
used. A training set was made composed of 250,000 random pair-
ings of features from different camera models and 250,000 random
pairings of features from the same camera model. The similarity net-
work was trained using the Adam optimizer [25] for 60 epochs, with
a learning rate of 0.0005, β1 = 0.9, β2 = 0.99, and ε = 10−6 .
Training was performed using Keras with a Tensorflow backend on
a GTX 1080TI GPU.

4.1. Source differentiation
In our first experiment, we assessed the performance of our system
in determining whether two image patches were captured by differ-
ent or the same camera models. We did this using three scenarios:
1) both patches captured by camera models known to the investiga-
tor, 2) one patch captured by a known camera model and the other
by an unknown camera model, and 3) both patches captured by un-
known camera models. These scenarios represent all scenarios that
an investigator may encounter.
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Fig. 3. Splicing detection example. An (a) original and (b) spliced
image. In (c) and (d), patches are highlighted that are found to have
a different source than the reference patch outlined in green.

To do this, we started with 10,000 unique patches each from 10
different camera models, yielding 100,000 total patches. Five of the
camera models were known camera models in A, and the other five
were the unknown camera models in C. The patches were randomly
paired and then tested by our proposed comparison system. As de-
scribed in Sec. 3.2, only image patches whose entropy was greater
than 4 nats were used.

The results of this experiment are shown in Fig. 2. The trian-
gular matrices show rates of correctly detecting two patches as cap-
tured by different camera models. The columns labeled “Self” show
rates of correctly detecting two patches as sourced from the same
camera model. For example, when one patch is captured by a Sony
DSC-H300 and the other by an LG G3, our proposed approach cor-
rectly detects the camera models as different at a rate of 98%. When
both patches are captured by a Samsung Galaxy S4, our proposed ap-
proach correctly detects patch sources as the same at a rate of 99%.

The overall accuracy achieved by our method was 91.1%. In
scenarios where both source camera models were known, our sys-
tem achieved 95.8% accuracy. In scenarios where both source cam-
era models were unknown, our proposed system achieved 90.6% ac-
curacy. In the scenarios where one camera model was known and
the other unknown, our system achieved 84.0% accuracy. How-
ever, in these scenarios a few particular cases, such as the Canon
SX420IS versus Canon SX630HS, greatly reduced the detection ac-
curacy. Most unknown versus known cases were correctly detected
at a rate of 99% or greater. The results of this experiment demon-
strate that our proposed system accurately determines meaningful
information about the source camera models of two patches, even if
one or both of the camera models are unknown.

We note that there were a few cases that were difficult for our
proposed approach to detect. These instances typically occurred
when the two camera models were produced by same manufacturer,

or when both of the camera models were a cellphone or DSLR. The
latter illustrates the need for a diverse training set, since our known
database is primarily composed of point-and-shoot camera models.

In addition, we compared to an approach adapted from Bondi et.
al in [19]. Briefly, their method detects and localizes image splicing
by iteratively clustering image patches into either original or forged
sets. As part of their algorithm, they calculate the Bray-Curtis dis-
tance between the softmax scores of patches as output by a cam-
era model identification CNN. This distance is used to determine set
membership (i.e. original or forged content). We tested the efficacy
of using this distance to compare the source of two image patches.

To compare to their approach, we first used their pre-trained con-
volutional neural network from [19] to output the softmax scores of
image patches. Then, we calculated the Bray-Curtis distance be-
tween pairs of these scores, and used a threshold to detect whether
the camera models were the same or different. Since all camera mod-
els in this experiment were unknown with respect to the Bondi et al.
CNN (with the exception of Sony DSC-T77), we compare only to
the unknown cases. We set the decision threshold so that the false
alarm rate is equal to the false alarm rate of the unknown cases in
our system (4.5%), to make a fair comparison.

In all cases our proposed method outperforms the method we
adapted from Bondi et al, except when one patch was sourced by a
Sony DSC-T77 and the other a Pentax K-7 camera. This shows that
our proposed system more accurately compares the camera model
source of image patches than the approach we adapted from [19].
We note that the Sony DSC-T77 is known relative to the Bondi et al.
neural network yet is unknown to our system.

4.2. Splicing detection
An investigator may also be concerned with whether an image is a
spliced forgery. In this experiment, we demonstrate the promise of
our proposed approach for detecting spliced images that are a com-
posite of content from two different camera models. To do this, we
took a spliced image and split it into 256× 256 patches with 50%
overlap. We selected one patch as a reference, computed its compar-
ison score to every other patch in the image, and then highlighted all
of the patches that were detected as captured by a different source.

An example of this analysis is shown in Fig. 3 on an image
downloaded from an online forum1. The original and spliced images
are shown in (a) and (b). In (c) we selected a patch in the origi-
nal part of the image as reference, and our method highlighted the
foreign portion of the image a having a different source. In (d) we
selected a patch in the foreign part of the image as reference, and our
method highlighted the original parts of the image as having a differ-
ent source. The results of this experiment demonstrate the promise
of our proposed approach at detecting and localizing spliced images.

5. CONCLUSION

In this paper we propose a system to compare the source camera
model of two image patches. To do this, we first train a CNN-based
feature extractor to output generic, high-level features which encode
information about the source camera model of an image patch. Then,
we learn a similarity measure that maps pairs of these features to a
score indicating whether the two image patches were captured by
the same or different camera models. We show that our proposed
system correctly determines if two image patches were captured by
the same or different camera models, even when the camera models
are unknown to the investigator.

1www.reddit.com/r/photoshopbattles
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