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ABSTRACT

We describe the acquisition of a large, diverse set of rebroadcast
images captured by a screen-grab, scanning a printed photo, or re-
photographing a displayed or a printed photo. This dataset consists
of 14, 500 rebroadcast images captured from a diverse set of de-
vices: 234 displays, 173 scanners, 282 printers, and 180 recapture
cameras. The diversity of this dataset—across devices and types of
rebroadcast—poses significant challenges to detecting rebroadcast
attacks. We evaluate the efficacy of four different classifiers trained
to simultaneously detect all types of rebroadcast images.

Index Terms— Rebroadcast Attack, Recapture Attack, Digital
Forensics, Biometrics

1. INTRODUCTION

A broad range of file-based forensic techniques have proven to be ef-
fective at detecting modifications of an original digital JPEG file [1].
These include analyzing JPEG compression parameters, JPEG file
markers, and EXIF format and content [2,3], analyzing sensor noise
patterns [4] and sensor color filter array patterns [5,6], and analyzing
the underlying discrete cosine transform coefficients for evidence of
multiple compressions [7–9]. Despite their efficacy, these techniques
suffer from a simple rebroadcast attack in which an altered image is
simply re-imaged, thus ensuring that any underlying camera prop-
erties are preserved. Rebroadcast content can also be used to attack
biometric systems [10].

There are four standard types of rebroadcast attack generated by:
(1) photographing a printed copy of an image; (2) scanning a printed
copy of an image; (3) photographing a displayed image; or (4) cap-
turing a screen-grab of a displayed image. Some of these rebroadcast
images may require some further manipulation to add the necessary
image metadata to be consistent with a camera original.

Many techniques have been developed to detect rebroadcast
attacks. These include the use of higher-order wavelet statistics
to identify scanned images [11], local binary patterns to identify
displayed images [12], Markov-based features to identify printed
images [13], physics-based features to identify printed images [14],
noise statistics and double JPEG compression to identify displayed
images [15], aliasing patterns to identify displayed images [16],
image-edge profiles to identify displayed images [17], and a con-
volutional neural network to identify displayed images [18]. Each
of these studies detected only a single type of rebroadcast attack.
In contrast, a few other techniques attempt to simultaneously de-
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tect rephotographed printed and displayed images [19–21], but not
scanned or screen-grabbed images.

All of the above cited techniques are tested on one or more
of the following four available datasets: (1) 2, 700 rephotographed
displayed images spanning three recapture cameras and three dis-
plays [12]; (2) 1, 500 rephotographed displayed images spanning
eight recapture cameras and one display [17]; (3) 1, 800 repho-
tographed printed and displayed images spanning three recapture
cameras, three displays, and two printers [22]; and (4) 4, 000 repho-
tographed printed images spanning seven recapture cameras and two
printers [13].

Despite some advances, rebroadcast detection techniques do not
attempt to simultaneously identify all four types of rebroadcast at-
tack, and are typically trained and tested against datasets captured
with a relatively small number of different displays, scanners, cam-
eras, and printers. Because each imaging device introduces distinct
artifacts, it remains unclear if these techniques will generalize to a
diverse range of imaging devices.

We describe the crowd-sourced collection of 14, 500 rebroad-
cast images captured from hundreds of different devices. We evalu-
ate the efficacy of four different classifiers trained to simultaneously
detect all types of rebroadcast images. These include three hand-
crafted features coupled with a support vector machine (SVM), and
a convolutional neural network (CNN). We find that although some
of these approaches work well on small and homogeneous datasets,
they do not necessarily generalize to large and diverse datasets.

2. DATASET

Our dataset consists of five types of images: (1) single-capture im-
ages that have undergone no modifications (original), [3]; (2) a pho-
tograph of a printed copy of an original image (print); (3) a scan
(with a flatbed scanner) of a printed copy of an original image (scan);
(4) a photograph of an image displayed on a computer display (dis-
play); and (5) a screen-grab of an image displayed on a computer
display (screen-grab). In order to create a diverse dataset with a
broad range of imaging devices we used Amazon’s Mechanical Turk
(AMT) [23] to crowd-source the collection of these rebroadcast im-
ages.

A separate task was created in AMT for the collection of each
type of rebroadcast image. For each task, an AMT worker was pro-
vided with 10 or 20 original images and performed one of the four
rebroadcast operations. For the print and scan tasks, AMT workers
were asked to print each of 10 original images using a color printer
and then either photograph (with a digital camera) or scan (with a
flatbed scanner) the printed images. For the display and screen-grab
tasks, AMT workers were asked to display each of 20 original im-
ages on a computer display and then either photograph (with a digital
camera) or capture a screen-grab of the displayed images.
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Table 1. Total number of (b) rebroadcast images along with a breakdown in the diversity of the (c) original recording device, the (d-e)
rebroadcast medium, and the (f-g) recapture device.

(a) (b) (c) (d) (e) (f) (g)
Rebroadcast Image Original Rebroadcast Rebroadcast Recapture Recapture

Type Count Camera Count Medium Medium Count Device Device Count
print 2, 824 998 printer 148 digital camera 109
scan 3, 821 990 printer 182 flatbed scanner 173

display 3, 873 1, 036 display 129 digital camera 119
screen-grab 3, 975 1, 021 display 132 NA NA

Workers were also asked to report the make and model of all de-
vices used in completing their task. To ensure high quality submis-
sions, the workers were required to photograph the printed/displayed
images with minimum perspective distortion and to use the maxi-
mum imaging resolution afforded by the recapturing device. For the
print, scan, and display images, the rebroadcast images were saved
in the JPEG format. The screen-grab images were saved in the PNG
format. AMT workers were asked to submit the rebroadcast images
without any further modifications.

Workers were given a variety of instructions to help us ensure the
validity of the submitted images. For print and display images, work-
ers were asked to frame the image so that the background was clearly
visible at the image boundary. For the screen-grab images, workers
were similarly asked to include part of their desktop background.
For the scan images, workers signed their name on the boundary of
the printed image. Each submitted image was manually reviewed to
make sure that they satisfied all of the required criteria, was manu-
ally cropped to remove the extraneous boundary, and saved as a PNG
image (to avoid double-compression artifacts).

Starting with 10, 000 original images, we collected a total of
14, 500 rebroadcast images. An additional 4, 500 original images
(without a rebroadcast version) were added to the final dataset.
Shown in Table 1 is the breakdown of total images for each rebroad-
cast type as well as the number of unique imaging devices used in
each category. Across all rebroadcast types, the collected images
span 1, 294 original cameras, 234 different displays (for display
and screen-grab), 173 different scanners, 282 different printers (for
print and scan), and 180 different recapture cameras (for print and
display).

For each rebroadcast type, images were acquired using a wide
range of imaging configurations – defined as a unique original cam-
era, rebroadcast medium, and recapture device combination. There
were a total of 2, 658 imaging configurations used for print images,
3, 666 for scan images, 3, 735 for display images, and 3, 737 for
screen-grab images.

3. METHODS

We describe three standard feature sets in combination with an SVM,
and a CNN-based approach to distinguish original from rebroadcast
images.

3.1. Local Binary Pattern Based Feature

Local binary pattern (LBP) has been used to represent local im-
age texture for image analysis [24]. An LBP-based texture feature
(LP,R), for a monochrome image, consists of a normalized occur-
rence histogram of texture patterns in a local neighborhood. The

values P and R determine the dimensionality and scale of the fea-
tures: P is the number of neighboring pixels selected at a radius R
from the feature center. Variants of LBP texture features have been
used to identify rebroadcast attacks [12, 19, 20].

For our tests, we implemented the approach described in [12].
This approach yields a feature dimensionality of 80. As described
in Section 4, a non-linear SVM was employed to simultaneously
distinguish original from all four types of rebroadcast images.

3.2. Multi-Scale Wavelet Statistic Based Feature

Wavelet decomposition [25] of images has found wide-spread appli-
cations in the domain of image representation. The wavelet decom-
position represents an image in terms of oriented spatial frequency
subbands. For natural images, the distribution of wavelet coeffi-
cients in each subband is well modeled with a generalized Lapla-
cian [26]. With the assumption that distortions to a natural image
will disrupt these natural image statistics, unnatural manipulations
like a rebroadcast attack can be identified as proposed in [11, 12].

For our tests, we implemented the approach described in [12].
This approach yields a feature dimensionality of 54. A non-linear
SVM was employed to simultaneously distinguish original from all
four types of rebroadcast images.

3.3. Markov-Based Feature

Markov chains have been used often in steganalysis to capture
the statistics of natural images in both spatial and frequency do-
mains [27–29]. As described in [13, 28], Markov-based features are
computed for a monochrome image by first applying a 2-D discrete
cosine transform (DCT) to every non-overlapping 8× 8 block. The
resulting DCT coefficients are then converted from floating-point to
integer values. Four difference arrays are generated by computing
the difference of each DCT coefficient with its neighboring coeffi-
cient in the horizontal, vertical, and two diagonal directions. Each
array is then modeled as a Markov random process using a one-step
transition probability matrix [30].

For our tests, we implemented the approach described in [13].
This approach yields a feature dimensionality of 196. As before, a
non-linear SVM was employed to simultaneously distinguish origi-
nal from all four types of rebroadcast images.

3.4. Convolutional Neural Network

Training a convolutional neural network (CNN) on full-resolution
images imposes significant demands on computational costs and data
acquisition. We, therefore, train our network on 64 × 64 image
blocks. A monochrome image is partitioned into non-overlapping
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Fig. 1. Shown is our proposed CNN architecture. Each rectangular block corresponds to a feature map: the number of channels and the
dimension of the feature maps is denoted below and along the sides of each block, respectively. Between each feature map are multiple
network layers: K3S{1,2} denotes a convolutional layer with kernel size 3 × 3 and stride 1 or 2, LReLU denotes a leaky ReLU activation,
BN denotes batch normalization, and FC denotes a fully connected layer. The input to the network is a monochrome 64 × 64 image block
that is pre-processed with 16 pre-defined filters. The network outputs a two-dimensional vector that is used to classify an image as original or
rebroadcast.

64×64 blocks from which a maximum of 300 blocks with the high-
est spatial variance are extracted. This selection is done because we
find empirically that these high spatial frequency regions afford bet-
ter classification accuracy.

Shown in Fig. 1 is our network architecture. The input (after pre-
processing) to the network is a 16×64×64 tensor corresponding to
the concatenation of 16 Gaussian filter residuals applied to a 64×64
image block. Eight of the filters are of size 3 × 3 and eight are of
size 5 × 5, each with a standard deviation equally spaced in the log
domain: 0.50, 0.58, 0.68, 0.80, 0.94, 1.10, 1.28, and 1.50.

Our network consists of six convolutional layers and two fully
connected layers followed by one log-softmax layer. The output of
each convolutional layer and the first fully connected layer is fol-
lowed by a leaky rectified linear unit activation (ReLU). Each con-
volutional layer uses a 3 × 3 filter size and the number of filters
increases with network depth as shown in Fig. 1. To stabilize the
training, batch normalization is used after each leaky ReLU layer
(except for the first and last layer).

The network outputs a two-dimensional vector ~vT =
(
v1 v2

)
.

The input image is classified as original if v1 > v2, and rebroadcast
otherwise.

During training, the batch size is 64, the momentum is 0.9, and
a cross entropy loss function is used. The learning rate is initialized
to 0.001 and is decreased by a factor of 0.9 when the loss plateaus.
The network ios trained for two epochs (135, 000 iterations in total).
After every 1, 000 iterations, the accuracy on the validation dataset
is recorded. The final model is the model with the highest validation
accuracy. Our network is implemented using the PyTorch framework
[31].

Because our network is trained on 64 × 64 image blocks and
not an entire image, we employ a simple voting scheme to classify
an entire image as either original or rebroadcast. As in the training
and validation, a maximum of 300 non-overlapping image blocks
with the highest spatial variance are extracted from a full-size im-
age. Each image block is classified as original or rebroadcast by our
network. If more than T% (50 ≤ T < 100) of the image blocks
are classified as rebroadcast then the image is classified as rebroad-

cast. If more than T% of the image blocks are classified as original
then the image is classified as original. If neither of these cases is
satisfied, then the image is not classified.

4. RESULTS

Using the three feature sets described in Sections 3.1-3.3 we train
three separate SVMs [32] to simultaneously identify all types of re-
broadcast images (print, scan, display, and screen-grab). The dataset
of 14, 500 original and 14, 500 rebroadcast images is randomly di-
vided into 80:20 training and testing datasets. A non-linear SVM
with a radial basis kernel function (RBF) is trained using 5-fold cross
validation to select the best values for the cost of mis-classification
(c) and the RBF parameter (γ).

Shown in Table 2 are the true positive rates (i.e., correctly clas-
sifying a rebroadcast image) for these SVMs for a 0.1% and 1.0%
false positive rate (mis-classifying an original image as rebroad-
cast). These accuracies correspond to the average accuracy over 100
random training/testing splits. For each feature set (LBP, wavelet,
LBP+wavelet, Markov) we report the classification accuracy for our
dataset (mturk, with 29, 000 images), our dataset combined with the
four datasets described in Section 1 (mturk+, with 46, 853 images),
and separately for the four individual datasets.

These results illustrate the fragility of some techniques when
trained against relatively small and homogeneous datasets. For ex-
ample, the LBP features yield a 93.4% detection accuracy (with
0.1% false positive) when tested against the 2, 700 image dataset
of [12], but only a 4.9% detection accuracy when tested against
our larger and more diverse dataset of 29, 000 images. Similarly,
the accuracy for the wavelet features drops from 74.2% to 4.5% on
these same two datasets. As shown in the bottom few rows of Ta-
ble 2, although the Markov features yield an accuracy of 88.9% on
dataset [12] as compared to LBP’s 93.4%, the Markov features gen-
eralize much better yielding an accuracy of 82.0% on our dataset
as compared to 4.9% for LBP. Overall, the Markov features signifi-
cantly outperform the LBP, wavelet, or combined LBP and wavelet
features.
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Table 2. Image classification for SVM on six different datasets (the
bracketed values correspond to the datasets specified in the given
reference). Columns (a) and (b) correspond to the true positive rate
for a false positive of 0.1% and 1.0%.

Features Dataset
True Positive (%)
(a) (b)

LBP

mturk 4.9 39.4

mturk+ 4.1 37.6

[12] 93.4 99.2

[13] 45.7 96.4

[17] 53.6 74.9

[22] 25.4 52.8

wavelet

mturk 4.5 31.9

mturk+ 4.2 27.1

[12] 74.2 98.8

[13] 50.1 96.5

[17] 83.6 93.8

[22] 13.2 45.5

LBP+wavelet

mturk 6.4 54.3

mturk+ 5.2 57.1

[12] 99.2 99.9

[13] 82.0 99.3

[17] 98.7 99.3

[22] 64.9 83.0

Markov

mturk 82.0 98.2

mturk+ 64.0 97.4

[12] 88.9 99.8

[13] 89.6 99.7

[17] 99.6 100

[22] 94.9 99.4

Shown in Table 3 are the detection accuracies broken down by
rebroadcast type for the mturk dataset and Markov features where it
can be seen that there is no large difference in the detection accuracy
across rebroadcast type.

Our CNN is trained, validated and tested on the 29, 000 origi-
nal and rebroadcast images described in Section 2, partitioned into
17, 400 training images, 5, 800 validation images, and 5, 800 testing
images. A total of 4.35, 1.44, and 1.45 million blocks are extracted
from the training, validation, and testing images, respectively.

Shown in Table 4 are the CNN testing accuracies. The first row
corresponds to the mturk dataset and the second row corresponds to
the mturk+ dataset, as described above. The classification threshold
T was set to yield a false positive rate of 0.1% (T = 55% for mturk
and T = 73% for mturk+).

With a false positive rate of 0.1%, our network achieves a de-
tection accuracy of more than 97% on both datasets. Note, however,
that unlike the SVM results in Table 2, this network can occasion-
ally fail to classify a small number of images (see last column of
Table 4). This failure to classify is the result of the voting scheme
used to translate detection of image blocks to detection of an entire
image.

The results in Table 4 correspond to a detection accuracy on en-
tire images. At the image block level, our network is tested on 1.45
million image blocks (mturk dataset) yielding a true positive rate
of 98.8% and false positive rate of 0.7%. Similarly, for the mturk+
dataset with 2.4 million image blocks, the true positive rate is 97.7%

Table 3. Image classification for SVM on the mturk dataset broken
down by rebroadcast type and for a false positive rate of (a) 0.1%
and (b) 1.0%.

Features Rebroadcast Type
True Positive (%)
(a) (b)

Markov

print 86.4 97.6

scan 82.5 98.7

display 83.5 96.9

screen-grab 77.0 99.5

Table 4. Image classification for CNN for a fixed false positive rate
of 0.1%.

Dataset False Positive (%) True Positive (%) Classified (%)
mturk 0.1 99.4 99.9

mturk+ 0.1 97.6 97.0

with a false positive rate of 1.8%. Overall, the CNN significantly
outperforms the more classic hand-crafted feature selection (see Ta-
ble 2).

5. DISCUSSION

We have collected a diverse, large-scale dataset of images for the
evaluation of rebroadcast attacks on forensic and biometric tech-
niques. We are making this dataset available upon request.

Using this dataset, we have shown that some previous techniques
for detecting rebroadcast attacks trained on smaller and more homo-
geneous datasets do not generalize to larger more diverse datasets.
We hypothesize that this failure is because each step of a rebroad-
cast attack (the original imaging device, the rebroadcast medium and
device, and the recapture device) introduces distinct image artifacts
that are not properly captured in small homogeneous datasets.

We have also shown that both classic handcrafted features and
neural networks are capable of simultaneously detecting multiple
types of rebroadcast attacks. The handcrafted Markov-based fea-
tures significantly outperform the other popular local binary pattern
and wavelet features, but a neural network significantly outperforms
all of these approaches. Although our network architecture yields
good detection accuracy, we expect that modifications to this archi-
tecture may lead to further improvements.

We were somewhat surprised that a single classifier was able to
simultaneously detect all four types of rebroadcast attack and are
currently investigating the nature of the feature differences between
original and rebroadcast that afford this type of generalization.
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