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ABSTRACT

In this paper, we propose a privacy preserving framework for
outsourced media search applications. Considering three par-
ties, a data owner, clients and a server, the data owner out-
sources the description of his data to an external server, which
provides a search service to clients on the behalf of the data
owner. The proposed framework is based on a sparsifying
transform with ambiguization, which consists of a trained lin-
ear map, an element-wise nonlinearity and a privacy amplifi-
cation. The proposed privacy amplification technique makes
it infeasible for the server to learn the structure of the database
items and queries. We demonstrate that the privacy of the
database outsourced to the server as well as the privacy of the
client are ensured at a low computational cost, storage and
communication burden.

Index Terms— data privacy; sparse approximation;
transform learning; ambiguization; content-based retrieval.

1. INTRODUCTION
The main challenge for outsourced media search is that the
server must remain capable of performing the search service
whilst knowing little about the owner’s data and the clients’
interests. This paper presents a new privacy preserving strat-
egy for the third party outsourced media search problem
based on the recently proposed concept of sparse approxima-
tion with ambiguization [1]. Our main contribution consists
of a novel framework based on Scaled Sparse Ternary Coding
and partial ambiguization. In our framework the owner and
the client compute the sparse codes from the media data that
they own using a trained linear map followed by a element-
wise nonlinearity. Each sparse code is split into two parts.
One part left almost in-the-clear and the other part is ambigu-
ized. Both in-the-clear and ambiguized codes of the owner’s
database are send to the server. The in-the-clear part is used
by the server for the initial similarity search. The ambiguized
part is used by the client to refine the list. A similar idea based
on DCT transform with binarization proposed in [2]. We im-
pose no restriction on the input data. It might be raw or based
on extracted features such as those from (aggregated) local
descriptors [3–5] or the top layer of a neural network [6].
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Fig. 1: Block diagram of the proposed framework.

In comparison to the most recent outsourced media search
framework based on robust hashing and partial encryption [8],
there are several fundamental differences:
1) Transformation: In [8], the authors used a dimensionality
reduction transform with random entries. In this paper, we
consider a square or an over-complete transform, which may
extend the dimensions. Moreover, our transform is trained
using the sparsifying Procrustes problem to ensure an opti-
mal sparse representation that is information preserving in
general, whereas the locality-sensitive hashing (LSH) in [8]
might preserve the distances only under certain conditions of
the Johnson-Lindenstrauss Lemma.
2) Codes: In [8], the codes are dense and binary, whereas in
our method the codes are sparse and ternary, which form a
basis of our ambiguization framework.
3) Encryption: In [8], the authors used standard encryption for
preserving privacy. However, we simply add ambiguization
noise to the nonzero components of the sparse representation.
The standard encryption has more computation and commu-
nication cost in comparison to our ambiguization method.
4) Decryption: In [8], the returned encrypted hash values
must be decrypted at the client side in order to perform simi-
larity search. However, in our method the client just computes
the similarity measure on the support of its sparse code that is
more computationally efficient.

1.1. Notation
The superscript (·)T stands for the transpose and (·)† stands for
the pseudo-inverse. Vectors and matrices are denoted by bold-
face lower-case (x) and upper-case (X) letters, respectively.
We consider the same notation for a random vector x and its
realization. The difference should be clear from the context.
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xi denotes the i-th entry of vector x. For a matrix X, x(j)
denotes the j-th column of X. We use the notation [N ] for
the set {1, ..., N} and card(S) for the cardinality of a set S.

1.2. Outline of the Paper
The remainder of the paper is organized as follows. In Sec. 2,
the problem formulation is introduced. Then, in Sec. 3 we
present our framework. We provide the privacy performance
in Sec. 4. Finally, conclusions are drawn in Sec. 5.

2. PROBLEM FORMULATION
Consider that a owner has a collection of M (raw) feature
vector x(m),m∈[M ] in the database X = [x(1),· · ·,x(M)],
where each feature vector x(m),m∈ [M ] from a set X ⊂RN
is a random vector with distribution p(x) and bounded vari-
ance σ2

x. The user has a query y(m) ∈RN which is a noisy
version of x(m), i.e., y(m)=x(m)+z, where we assume z∈
RN is a Gaussian noise vector with distributionN

(
0, σ2

zIN
)
.

The user is interested in some information about the subset
L (y) of the γ-NN (or γ-ANN) of y. The owner subcontracts
the similarity search to an entity called the server.

3. PROPOSED FRAMEWORK
3.1. Framework Overview
Our framework is composed of the following steps (Fig. 1):
1) Preparation at Owner Side: The owner computes the
sparse representations from the media data that he owns
using the trained linear map followed by the element-wise
nonlinearity. Each sparse representation is split into two
parts. One part is left in-the-clear in sparsified form and the
other part is sparsified and ambiguized. These representations
are send to the server.
2) Indexing at Server Side: The server indexes the in-the-clear
parts of the received sparse codes to a database.
3) Querying at Client Side: The client computes a sparse rep-
resentation from his query data using the same trained linear
map followed by the element-wise nonlinearity. Then, the
client sends the signs of a fraction of its sparse representation
to the server. The indices of these components correspond to
the in-the-clear part components of the sparse representation
generated by the owner.
4) Searching at Server Side: The server runs a similarity
search to identify the sparse codes that are most similar to the
query. Similarity is computed using the received partial query
code and the in-the-clear parts of the database codes. Finally,
the ambiguized parts of the most similar codes are send back
to the client, along with the distance information computed at
the server for the in-the-clear parts.
5) Refining at Client Side: The client runs a similarity search
on the support of his sparse code. The final list is computed
using similarity search within the initial list.
3.2. Scaled Sparse Ternary Coding
In [1], we use a transform model [9] for the sparse represen-
tation of vectors at the enrollment and identification phases.
This model suggests that a feature vector x(m) ∈ RN is ap-
proximately sparsifiable using a transform W ∈ RL×N , that

is Wx(m) = a(m) + ea, where a(m) ∈ RL is sparse, i.e.,
‖a(m)‖0 � L, and ea ∈ RL is the representation error of the
feature vector or residual in the transform domain. The sparse
coding problem for this model is a direct constraint projection
problem. This sparse approximation is as follows:
â(m)=arg min

a(m)∈AL

‖Wx(m)−a(m)‖22+λΩ (a(m)),∀m∈ [M ] .

The above direct problem has a closed-form solution for
any of the two important regularizers Ω (·) = ‖ · ‖0 or
Ω (·) = ‖ · ‖1. Analogous to [1], we consider the `0-
“norm” as our sparsity-inducing penalty. In this case, the
solution â(m) is obtained exactly by hard-thresholding the
projection Wx(m) and keeping the Sx entries of the largest
magnitudes while setting the remaining low magnitude en-
tries to zero. For this purpose, we define an intermediate
vector f(m) , Wx(m) ∈ RL and denote by λx the Sx-th
largest magnitude amongst the set {|f1(m)|, ..., |fL(m)|}.
Then the closed-form solution is achieved by applying
a hard-thresholding operator to f(m), which is defined
as aH (m) = Hλx

(f (m)) = 1|fl(m)|≥λx
f(m),∀m ∈

[M ] ,∀l ∈ [L]. In [1], the authors consider the alpha-
bet of sparse representation vectors as A = {−1, 0,+1}
and apply the ternary hash mapping to Hλx (Wx (m)) as:
aT (m) , Tλx

(Wx (m)) ∈ {−1, 0,+1}L, ∀m ∈ [M ],
where Tλx

(Wx (m)) = sign (Hλx
(Wx (m))).

In order to reduce the information loss of ternary hash
mapping, we propose the Scaled Ternary Sparse Coding
(SSTC) scheme, which enhances the accuracy of similarity
search. It is clear that, given a fixed λx (or Sx), the operator
Tλx

(·) imposes a greater loss of information in comparison
to the operator Hλx

(·). By employing SSTC, we make a bal-
ance between the sparse vector aH (m) and ternarized sparse
vector aT (m). Given λx, to find an optimal scale factor τm ∈
R+ such that aH (m) ≈ τmaT (m), we solve an optimization
problem: τ∗m = arg minτm‖aH(m)−τmaT (m)‖22, s.t. τm >

0. The cost function ‖aH (m)− τmaT (m) ‖22 =: J (τm), can
be express as J (τm) = aTH(m)aH(m)−2τmaTH(m)aT (m)+
τ2
maTT (m)aT (m). Since aTH(m)aH(m) = gm is a known

constant variable, and also aTT (m)aT (m) = Sx, we can
rewrite J (τm) as gm − 2τmaTH(m)aT (m) + τ2

mSx. There-
fore, the optimal weight τ∗m can be simply obtained by taking
the derivative of J (τm) with respect to τm and set to zero.
As a result, we have τ∗m =

(
aTH(m)aT (m)

)
/Sx. Since

aT (m) = sign (aH(m)), we have τ∗m = 1
Sx

∑ |aH(m)|.
Through out this paper, we denote by ψ(·) the operator

Tλ (·) in general, i.e., ψ(Wx) = τ � Tλ (Wx), where � is
the Hadamard product.
3.3. Learning Structured Overcomplete Transform
We construct our overcomplete transform by stacking the C
orthonormal sub-transforms as W =

[
WT

1 · · · WT
C

]T ∈
RL×N , with L = CN , where Wc ∈ RN×N , c ∈ [C] are
sufficiently different. Our similarity measure between Wc

and Wć, c, ć ∈ [C] is based on the mutual coherence [10] of
the Gcć =

[
WT

c WT
ć

]
∈ RN×2N , which is defined as:

1993



µ (Gcć) = max1≤k,j≤N,k 6=j
|gT

cć(k)gcć(j)|
‖gcć(k)‖2.‖gcć(j)‖2

. Since Wc

and Wć are orthonormal matrices, the mutual coherence of
this transform satisfies 1/

√
N ≤ µ (Gcć) ≤ 1 [11].

Our sparsifying transform learning is based on the classi-
cal Procrustes matrix problem [12]. That is, we seek orthonor-
mal matrices Wc ∈ RN×N , c ∈ [C], which most closely
transforms a fix matrix X ∈ RN×M into a sparse matrix
Ac ∈ RN×M . Therefore, using the Frobenius norm, the
problem is to find Wc minimizing ‖Wc X−Ac‖2F , subject
to WcW

T
c = I. For the square sparsifying transform, it

can be shown that for variable Wc and fixed X, the closed-
form solution Wc = UcV

T
c is given by the singular value

decomposition AcX
T = UcΣcV

T
c . Our algorithm for the

above minimization problem alternates between solving for
Ac = ψ (WcX) (sparse coding step) and Wc = UcV

T
c

(transform update step), whilst the other variables are kept
fixed. Moreover, note that we can learn each transform ma-
trix Wc based on the training signals of class c ∈ [C]. In
this case, each block of our over-complete transform will be
optimal for its corresponding class.

3.4. Algorithm
3.4.1. Preparation at Owner Side
The owner transforms offline the feature vectors with trained
linear map W followed by the element-wise nonlinearity map
ψ(·). Then, the owner splits each scaled sparse ternary code
into a public sparse code a1 and private (secret) sparse code
a2, with respective lengths Lp and Ls such that L = Lp+Ls.
The sign of the sparse components of the public part, i.e.,
aclear(m) = sign (a1(m)) ,∀m ∈ [M ], along with the am-
biguized non-sparse code aamb(m) = a2(m)⊕n,∀m ∈ [M ]
are outsourced to the server, where n ∈ {±τm},m ∈ [M ]
and⊕ is orthogonal direct sum. The ambiguization scheme is
similar to the proposed method in [1]. It is clear that there is a
trade-off between privacy and utility at the server. If we send
more components (larger value for Lp) to the server, we in-
crease the privacy leakage, since the server might cluster the
public codes in the database. In contrast, a small value for Lp
leads to higher privacy.

3.4.2. Indexing at Server Side

Since the code is sparse, it can be indexed as in [13, 14].

3.4.3. Querying at Client Side

The client transforms the feature vector y from its query,
using the shared trained linear map W followed by the
element-wise nonlinearity map. Then, the client splits his
scaled sparse ternary code into two parts. The sign of the
public part then forms the query, which is send to the server.
In contrast to the ambiguization part at the owner side, we
have no ambiguization for the private part at the client side.

3.4.4. Searching at Server Side

Provided that meaningful similarity search is possible between
bclear and aclear(m),m∈[M ], the server seeks all {aclear(m),
m ∈ [M ]} NNs in the radius γ1Lp from the query bclear in

order to produce an initial list L1 of possible candidates as
L1(bclear) = {m∈ [M ] : dA1

(aclear (m) ,bclear) ≤ γ1Lp},
where dA1

(., .) is a similarity measure in space A1.
Finally, the server sends back the initial list L1 along with

the corresponding calculated similarity measure dA1
(aclear(m),

bclear) (optional side information for the improved search ef-
ficiency) as well as retrieved corresponding ambiguized parts
{aamb(m),∀m ∈ L1}. The list size card (L1) is supposed to
be sufficiently large for privacy preservation. The server can
either fix the threshold or the number of K similar elements.
These parameters are key elements setting the privacy-utility
for the clients. A longer initial candidate list results in a
higher quality of search at the client side, while a shorter
candidate list provides higher client privacy.

3.4.5. Refining at Client Side

In [1], the authors show that by imposing ambiguization
noise, all distances from the server viewpoint go to a constant
value, i.e., all vectors aamb(m),∀m ∈ [M ] seem equally
likely from the server standpoint. However, at the client side
we can effectively preserve distances up to the desired radius,
just by computing distances (or similarity measure) on non-
zero components of the sparse representation of the private
part bpriv, i.e., on supp (bpriv).

The client receives the initial list L1, the corresponding
distances, and ambiguized vectors {aamb(m),∀m ∈ L1}. It
then computes the distances (or similarity measure) based on
the support of its sparse vector, i.e., dA2 (bpriv, · ) is defined
on the support of bpriv. Next, it produces the final list L2.

4. PRIVACY PERFORMANCE

We use mutual information between the N -dimensional ran-
dom feature vector x and the reconstructed feature x̂, i.e.
I(x; x̂)1, as a metric for privacy leakage. Since the mu-
tual information quantifies the Kullback-Leibler distance
between the prior and posterior knowledge of the original
data x and reconstructed data x̂ and is also related to the
Fisher information for asymptotically large databases. In-
deed, our privacy leakage is equivalent to the invertibility
of our scheme. We know that I(x; x̂) = h(x) − h(x|x̂) =
h(x) − h(x − x̂|x̂) ≥ h(x) − h(x − x̂), where the last
inequality is based on the fact that conditioning reduces en-
tropy. We simplified our problem by considering a single-
letter formulation and defined separable distortion met-
rics by averaging the single-letter distortions. Since for a
given variance, the normal distribution maximizes entropy,
and also assuming that x − x̂ has a normal distribution
with zero mean and a variance of E[(x − x̂)2], we have:
h(x)−h(x−x̂) ≥ 1

2 log2

(
2πeσ2

x

)
− 1

2 log2(2πeE[(x−x̂)2]).

Therefore, we have the lower bound I(x; x̂) ≥ 1
2 log2(

σ2
x

D ).

We denote by δmax = maxD∈D0

(
1
2 log2(

σ2
x

D )
)

, the maximal
privacy leakage on the distortion interval D0.

1All variables and vectors in the entropy and mutual information func-
tions are considered to be random variables and vectors.
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Fig. 2: The relation between distortion and sparsity ratio.

Here, we propose a scaled reconstruction scheme, which
achieves the same performance as SSTC, while reducing the
computational cost and storage space effectively. Given λx,
to find an optimal global scale factor θ such that X ≈ θ X̂, we
solve an optimization problem: θ∗=arg minθ ‖X− θ X̂‖2F ,
s.t. θ > 0. The cost function ‖X − θX̂‖2F =: J (θ), can be
expressed as J (θ) = tr[XTX− 2θXT X̂ + θ2X̂T X̂]. Since
XTX and X̂T X̂ are known constant variables, the optimal
scale factor θ∗ can be simply obtained by taking the deriva-
tive of J (θ) with respect to θ and setting to zero. As result,
we have θ∗ = tr[XT X̂]

/
tr[X̂T X̂]. This means that, instead

of storing the SSTC of the private part of the database at the
server, we just need to store the STC of them. The owner
can obtain the global scale factor θ based on the training data
and then shared it with authorized clients. The performance
of the scaled reconstruction scheme is depicted in Fig. 2a.
Fig. 2 depicts the amount of reconstruction distortion as a
function of the sparsity ratio αx = Sx/L for the condition
that xn ∼ N (0, 1), L = N . In Fig. 2a, we compare the dis-
tortion measure for four different cases. As shown, both the
STC and SSTC have a global minimum, which are obtained
at around αx = 0.53 and αx = 0.41, respectively.

In Fig. 2b, we illustrate the reconstruction distortion for
the cases in which the owner sends the fraction Lp of his
L-dimensional ternarized projected data with the alphabet
{−1, 0,+1} or {−τm, 0,+τm} to the server, as the pub-
lic clear database. Also, we compare the distortion mea-
sure with the hard-thresholding case. Therefore, the curious
server just capable to reconstruct the x(m),∀m ∈ [M ] from
aclear (m) ,∀m ∈ [M ] with effectively high distortion level,
even if it knows the sparsifying transform W.

The bit rate of our encoding scheme can be formulated
as R= 1

L log2

((
L
Sx

)
2Sx

)
. In Fig. 3a, we depict and compare

the distortion-rate behaviour of the ternary encoding scheme
for various ratios of Lp/L along with the maximal privacy
leakage δmax. As it is shown, the maximal achievable rate is
1.585 which is equal to the entropy of the ternary alphabet.
The recursive part of the distortion-rate curve corresponds to
the increasing behaviour of distortion after a certain sparsity
ratio Sx/L. This behavior is studied with more details in [15].

Moreover, the curious server might want to cluster the
database vectors from aclear (m) ,∀m ∈ [M ]. In [1], the
authors introduced a Kullback-Leibler divergence privacy
protection measure, in order to address this clustering threat.
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Fig. 3: Effect of public length ratio Lp/L on privacy mea-
sures: a) “reconstruction” leakage, b) “clustering” leakage.

Utilizing the same measure, we study the privacy protection
of our outsourced media search scheme for the case in which
the owner sends the fraction Lp of its own L-dimensional
ternarized projected data with the alphabet {−1, 0,+1} to
the server. To this end, we generate four 500-dimensional
i.i.d. vectors with distribution N (0,1) and 1000 500-
dimensional i.i.d. vectors with distribution N (0,0.1). Then
we add each 250 (out of 1000) low variance vectors to
the four high variance ones (schematically shown in [1,
Fig. 6]). This results in a database of 1000 vectors ad-
hering to four clusters. We denote the probability density
functions (PDFs) of ‘intra-cluster’ and ‘inter-cluster’ of dis-
tances by Pintra and Pinter, respectively. To this end, we
define distribution P1 as mixture of Pintra and Pinter, that
is, P1 = αx Pintra + (1−αx)Pinter, 0 ≤ αx ≤ 1. Also,
we denote the Gaussian distribution N

(
µ2, σ

2
2

)
by P2,

such that µ2 and σ2
2 are the mean and variance of P1, re-

spectively. Therefore, the privacy protection measure of
disclosing the structure of database by the curious server
can be defined by the Kullback-Leibler divergence (KLD)
as D(P1‖P2) = αxD(Pintra‖P2) + (1−αx)D(Pinter‖P2),
where D(P1‖P2) =EP1[log P1

P2
]. Now, the privacy protection

constraint can be expressed as D (P1‖P2)≤ ε, where ε deter-
mines the allowable privacy leakage from database clustering.
In Fig. 3b, we illustrate the estimated PDFs of pair-wise dis-
tances in the transform domain. The solid lines indicate
P1 with three public-length ratios Lp/L = 0.25, 0.50, 0.75
and two sparsity ratios Sx/L = 0.02, 0.16. As evident, by
increasing the sparsity ratio, the distribution P1 becomes uni-
modal Gaussian, therefore, the curious server cannot cluster
the database. The dashed lines indicate the corresponding
Gaussian distribution P2 fit to each solid plot. It is clear
that the larger Lp requires larger Sx/L in order to satisfy
the specific privacy protection constraint ε. Therefore, given
the desired privacy protection constraint ε, the curious serer
cannot cluster the public database, provided D (P1‖P2) ≤ ε.

5. CONCLUSION
We have proposed a novel privacy preserving framework for
outsourced media search applications based on sparse ternary
coding with partial ambiguization. The results show that
the curious server cannot reconstruct and cluster the samples
in the database, provided the mutual information privacy
leakage I(x; x̂) and Kullback-Leibler privacy protection
D(P1‖P2) constraints are satisfied.
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