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ABSTRACT
Geo-tagging images of interest is increasingly important to law en-
forcement, national security, and journalism. Many images today do
not carry location tags that are trustworthy and resilient to tamper-
ing; and the landmark-based visual clues may not be readily present
in every image, especially in those taken indoors. In this paper, we
exploit an invisible signature from the power grid, the Electric Net-
work Frequency (ENF) signal, which can be inherently recorded in a
sensing stream at the time of capturing and carries useful location in-
formation. It is, however, very challenging to extract an ENF signal
from a single image, as compared to the recent art in extracting ENF
traces from audio and video. This paper presents novel investiga-
tions toward this challenge, by synergistically exploring the rolling
shutter effect of CMOS imaging sensors and entropy differences of
composite signals. We study quantitatively the relationship between
the ENF strength and its detectability from a single image, and bring
out a unique forensics capability of invisible traces that shine a light
on an image’s capturing location.

Index Terms— Geo-Tagging, Frequency Estimation, Electric
Network Frequency (ENF), Rolling Shutter

1. INTRODUCTION

The digital era in which we are living today has seen an unprece-
dented amount of digital audio, image, and video being generated ev-
ery day. The information they carry about the location origin where
media files were captured is valuable for law enforcement, national
security, and journalism. In this paper, we focus on the problem
of deriving information from a single image regarding the location
where it was captured, especially in challenging scenarios which ex-
isting technologies cannot sufficiently address.

A number of digital cameras today, including many cellphone
cameras, can associate the built-in GPS input with the image/video’s
metadata field relating to the location in which the image/video was
captured. This metadata, however, is not always available and can
be tampered with in a relatively easy way.

Recent advances, notably through the FINDER program by
the U.S. Intelligence Advanced Research Project Activity (IARPA)
agency [1], utilized computer vision techniques and a big data
paradigm to exploit visible terrains and landmarks appearing in an
image and match them with a variety of geospatial data to identify
the image’s geographic location. These technologies would still face
considerable challenges in cases of absence of visible landmarks,
such as when the background of outdoor images does not have dif-
ferentiating features, or when an image is captured indoors. The
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latter scenarios are common in such global efforts as fighting crime
on child exploitations [2–4], where a significant portion of images of
such mistreatment and abuse are taken indoors in private locations
by perpetrators, and the Internet has eliminated the national borders
on such crime increasing the difficulty in tracking down the perpe-
trators. Having new technologies to locate where such images were
taken, even on a coarse level, will provide an unprecedented tool to
aid global investigations, supporting law enforcement in appropriate
jurisdictions.

In this work, we explore a nearly invisible location-related sig-
nature that is inherently captured in an image. This invisible sig-
nature comes from the power distribution network whose varying
frequency properties over time are known as the Electric Network
Frequency (ENF) signal. There is a growing amount of multimedia
forensics research recently on the ENF signal, which, over time in
a multimedia file, reflects the behavior of the power grid at the time
and the location where a media signal is recorded. Such a relation
enabled the estimation of the time, location and integrity of corre-
sponding multimedia signals [5–9].

Due to the temporally varying nature of the ENF signature that
plays a critical role in its ability to relate to time and location, ENF
extraction in the literature thus far requires the hosting signal to have
a temporal nature as well, e.g., an audio or a video. Two intrigu-
ing questions to push the boundary of ENFs localization capability
are: Can ENF traces be found in a single image? And can such a
basic attribute as the nominal ENF value be inferred at a reasonable
accuracy from a single image? This paper aims at answering these
questions whereby narrowing down whether an image under ques-
tion comes from a 50 Hz or 60 Hz country would provide a valuable
clue to law enforcement investigations and shine a light on the juris-
diction in charge. To the best of our knowledge, this is the first work
toward developing a unique forensics capability to address the chal-
lenging geo-location scenarios for individual images that do not have
a visible landmark or GPS tag, especially those captured indoors.

The rest of this paper is organized as follows. Section 3 presents
our proposed approaches for ENF signal extraction from a single
image. Section 4 shows the experiments conducted and results ob-
tained. Section 5 concludes the paper.

2. BACKGROUND AND PRELIMINARIES

Electric Network Frequency The Electric Network Frequency
(ENF) of power distribution networks has a nominal value of 60 Hz
in most of the Americas, and 50 Hz in most of the rest of the world.
The instantaneous frequency of the sinusoidal variation in power
networks does not stay at this nominal value. Rather, it fluctuates
around the nominal value due to load changes across the power grid.
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Table 1. Estimated parameters for rolling-shutter images.
iPhone 6s iPhone 6 iPhone 5

Tro (ms) 19.8 30.9 22.6
number of rows, L 3024 2448 2448
frow (kHz) 152.7 117.1 108.3

The trends in the ENF variations tend to be very similar at different
points in the same grid. The changing instantaneous value of the
ENF over time is what we define as the ENF signal.

The ENF signal has been a growing subject of multimedia foren-
sics research in recent years due to its presence in media sensing sig-
nals. If an audio or video recording is made in an area where there is
electrical activity, it is likely that this recording will capture the ENF
variations at the time of recording. In audio recordings, this has been
attributed to the acoustic mains hum emitted from devices connected
to the power mains [10]. In video recordings, this comes from the
near-invisible flickering of electric lighting [11, 12].

In this paper, we show that it is possible to find ENF traces cap-
tured in single images as well when they are taken in electrically
lighted settings. In particular, ENF can be extracted from images
taken by the widely used cameras with complementary metal–oxide–
semiconductor (CMOS) image sensors that employ a rolling shutter.

Rolling Shutter and Read-Out Time Unlike cameras that em-
ploy a global shutter that acquires the pixels of an image frame all
at the same time, a camera employing rolling shutter acquires an
image frame one row at a time. Although traditionally regarded as
the cause of negative artifacts in images/videos, the rolling shutter
has been exploited in beneficial ways for computational photogra-
phy applications [13,14]. In this work, we shall see that this sequen-
tial read-out time mechanism of the rolling shutter while capturing
a single image allows the resulting image to capture samples of an
incoming electric light signal at slightly different points in time, and
thus obtain a short segment of ENF traces.

With rolling shutter, each row of the frame is sequentially ex-
posed to incoming light. The amount of time during which a camera
acquires the rows of an image frame, which we denote by the read-
out time Tro, is specific to the camera’s model line and is a value that
is not typically given in its user manual or specifications list.

In order to extract ENF information found in a single image, it
is important to know the read-out time Tro value of the camera that
had produced the image under question. In our work, we have made
use of a protocol inspired by the one proposed in [15,16] to compute
the Tro value of a camera at hand. Table 1 lists the estimated values
we computed for the cameras on the backsides of different models
of iPhone devices that are used in this paper.

ENF Signal Embedding in a Single Image The rolling shut-
ter mechanism equivalently turns rows of images of CMOS cameras
into high-frequency samplers across rows. The sampling frequency
of a row can be expressed by frow = L× T−1

ro , where L is the num-
ber of rows of the image. A CMOS camera captures ENF traces by
recording the electric light signal. The electric light intensity embed-
ded in the resulting image relates to the supplied electric current via
a power law thus making its nominal frequency twice the nominal
ENF value, i.e., 120 Hz in most of the Americas and 100 Hz in most
other parts of the world. We can express parametrically the ENF sig-
nal captured in an image by considering the acquisition at different

row indices i to be samples of a fluctuating signal as follows:

e(i) = A cos

(
2π
fENF

frow
· i+ φ

)
, (1)

where fENF is the fluctuation frequency of the light intensity,A is the
magnitude, i is the row index of the image in {0, · · · , L − 1} , and
φ is the initial phase of ENF signal at time the first row is acquired.

When an image is taken through the rolling shutter mechanism,
the light intensity signal is modulated with a native image x(i, j).
Although this modulation can be nonlinear, a large part can be con-
sidered as an additive component e(j) to the native image content.
Hence, the ENF-containing image y(i, j) can be approximately
modeled by adding a parametric surface to the native image content,
namely, y(i, j) = x(i, j) + e(j).

3. ENTROPY MINIMIZATION FOR
PARAMETRIC-SURFACE–REMOVED IMAGES

As a first step toward the challenging geo-tagging problem, we ad-
dress the following research question: Can we differentiate whether
a captured image contains 100 or 120 Hz ENF signal? If yes, what
is the lowest level of the intrinsically embedded signal that can be
detected? To answer this question, we propose a method that will
exploit i) the prior knowledge that the embedding signal has a para-
metric form, and ii) a largely predictable change in the statistical
behavior of the image before and after ENF embedding.

Entropy Impact by ENF Embedding We observe that smooth
image regions tend to become busier or have higher entropy after
being corrupted by real-valued sinusoid signals. In case of an image
column with constant intensity, the sole bin of the histogram before
corruption starts to split into multiple bins due to the positive and
negative additive values contributed by the sinusoid signal. Such
corruption increases the entropy of the constant signal from zero to
a positive value. In case of an image column with linearly increas-
ing intensity values, similar statistical behavior exists even though
the increase is not as drastically as the constant intensity case. The
histogram of the linearly increasing intensity case before corruption
is a square window. After corruption, the bins at two sides of the
window will split, which may increase the entropy.

We verify the statistical behavior claimed above via simulation.
We simulated the ENF embedding process by adding real-valued si-
nusoid signals at 50 or 60 Hz with ten randomly picked phases to
columns of images. We calculated the estimated entropy increase for
each column and draw the histogram of entropy increase in Fig. 1 (a).
It reveals that 99% of all columns have an increase in entropy after
being corrupted by sinusoid signals, with the understanding that en-
tropy values of texture regions of images may not be sensitive to the
additive sinusoid signals.

Entropy Minimization for Frequency Estimation Below we
lay out the idea of estimating the frequency from an ENF cor-
rupted image column. The statistical behavior that entropy increases
after ENF corruption guarantees that if the true ENF signal is re-
moved, the entropy will return to the entropy of the uncorrupted
image content. This entropy value is a local minimum or even
a global minimum of a cost function, Jk(p), defined as the en-
tropy of a real-valued sinusoid subtracted image column with search
parameters p = [A, f, φ]T . In case the cost function is in ad-
dition smooth within a small neighborhood of the true parameter
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Fig. 1. (a) Histogram of column’s entropy increase due to ENF sig-
nal embedding. (b) Error surfaces for 25 equally-spaced columns
of an image. Darker color means lower error. Objective function
parameters: amplitude, A, in x-axis; and initial phase, φ, in y-axis.

pg = [Ag, fg, φg]
T , the true frequency can be obtained by a param-

eter search.
To estimate the embedding ENF frequency from an image, we

define a cost function,
∑K
k=1 Jk(p), which is the total entropy of

K-selected columns of the sinusoid-surface–removed image with
the search parameter p. As is shown in the proofs from a supple-
mental document (hosted on the authors’ webpages), a cost function
involving K columns can boost the accuracy of the estimation by at
most

√
K times measured in the standard deviation of the frequency

estimator.
We can further enforce a strong prior knowledge that f is either

100 or 120 Hz, so that the parameter search is restricted to a 2-d
space (A, φ). Fig. 1(b) of error surfaces for 25 far apart columns of
an image reveals that, when the frequency is a correct guess, the cost
functions are generally well-behaved, i.e., convex, and with unbiased
minimum positions.

Proposed Algorithm We briefly outline the frequency decision
task as follows. Given an image corrupted by one of the two pos-
sible ENF signals, we estimate (A, φ) separately for f = 100 and
120 Hz. When the estimation is carried out for the correct frequency,
the residue is roughly the native image content; when the estimation
is carried out for incorrect frequency, the residue is a combination of
the native image content, and the sum of two sinusoid signals with
different frequencies. Given that the native image content usually
has lower entropy than the content with additional sinusoid compo-
nents, we choose the candidate frequency leading to the lower en-
tropy as our decided frequency. The pseudo code for the proposed
entropy minimization method is shown in Algorithm 1.

4. EXPERIMENTAL RESULTS

Images with Synthetic ENF Traces We created a set of test im-
ages to emulate those captured in 50 Hz and 60 Hz regions using six
images that do not contain detectable ENF traces. Sinusoid signals
with random initial phases and a list of decreasing amplitude levels,
[16, 8, 4, 2, 1, 0.5] in the same unit of pixel intensity with 256-level
shades of gray were added to the native images to generate a total of
72 (= 6 × 2 × 6) images. For each image and each tested number
of columns used, the proposed algorithm of stochastic nature was
applied five times to better reveal the performance of the algorithm
on the particular image. Performances for 50 Hz and 60 Hz images
were assessed separately.

The estimated probability of success decision (aka the success
rates) were shown in Figs. 2 (a) and (c) as a function of decreasing

Algorithm 1: The proposed entropy minimization method
for images with embedded ENF traces.

input : An RGB image with embedded ENF at 100/120 Hz
output: f̂ENF ∈ F = {100, 120} Hz

Step 1. Initialization
1 Convert the image to gray-scale
2 Detrend image’s overall intensity with RANSAC algorithm
3 Randomly select K gray-level columns, and augment them

into a sample matrix X = [x(1), · · · , x(K)]

Step 2. Optimization
4 br(`)← minA,φ CostFunc (X,F(`), A, φ) , ` = 1, 2.

Step 3. Decision
5 Decide f̂ENF between 100 Hz and 120 Hz based on the

setting that gives a smaller bitrate br

Subroutine bitrate ← CostFunc (X, f, A, φ)

1 e(i)← A cos(2π f
frow
· i+ φ), ∀i

2 X̂(i, k)← X(i, k)− e(i), ∀(i, k)
3 bitrate array(k)← entropy(hist(X̂(:, k))), ∀k
4 return mean(bitrate array)
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Fig. 2. Success rates for deciding images with (a) 60 Hz and
(b) 50 Hz ENF as a function of the ENF strength and the number of
columns used in the cost function. (b)(d) The corresponding MAEs
for the amplitude estimator.

ENF amplitude for 60 Hz and 50 Hz images, respectively. It is re-
vealed that the success rate for both cases can be as high as 0.9 for
ENF amplitude equals to 4. As the amplitude decreases further, the
success rate drops to random guesses when the amplitude is between
0.5 and 1 for 60 Hz images, and is around 0.5 for 50 Hz images.

Examining the accuracy of the estimators for the nuisance pa-
rameters A and φ can hint at the reliability of the proposed entropy
minimization method. For example, Figs. 2 (b) and (d) shows that
as the number of columns used increases, the mean absolute error
(MAE) generally decreases. Both plots for 50 Hz and 60 Hz images
show that increasing from using one column to two columns leads
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Fig. 3. Four scenes from images taken in the US with nominal ENF
at 60 Hz using iPhone 6s.

to the largest improvement in accuracy, and a further increase in the
number of columns used leads to marginal improvement.

Real Rolling Shutter Images with ENF Traces We created
a real-world image dataset using multiple smartphone cameras
to take images in indoor environments. For each scene, differ-
ent levels of exposure bias were set on the camera using each
camera’s built-in functionality to control the exposure time of the
captured images. We acquired in the United States a dataset with
60 Hz ENF signal containing six scenes, each scene with expo-
sure bias of [0,−1,−2,−3]; and in China a dataset with 50 Hz
ENF signal containing five scenes, each scene with exposure bias
of [0,−1.5,−1.8,−2.1,−2.4,−3]. A less negative exposure bias
corresponds to a longer exposure time and a brighter image, and
vice versa. Fig. 3 shows four scenes from the United States where
the brightness of the electric lighting varies at 120 Hz; for each
scene, four levels of exposure bias were shown. As we can see, a
short exposure time can quite clearly capture the fluctuation of the
ENF light signal. As the exposure time increases, the amplitude of
the fluctuation of the captured signal decreases due to an effective
convolution of a rectangular window with the electric light signal.

Figs. 4 (a)–(b) show the performance of the proposed entropy
minimization on real-world camera images captured in a 60 Hz ENF
country. One can observe that compared to using two columns to
obtain a strong detection performance as in the synthetic case, 16
columns are needed in the real-world camera image case. It is also
revealed that as the level of exposure bias reduces from −2 to −1,
the method breaks as the success rate becomes dominated by being
biased toward deciding 50 Hz. Combining the two aspects of the
results, we anticipate that the current algorithm may start to fail on
real-world camera images when the amplitude is below 10.

Figs. 4 (c)–(d) for real-world camera images captured in a 50 Hz
country similarly shows that as the number of columns used increase,
the success rate and estimation accuracy improves. An interesting
observation is that no matter how weak the ENF signal is, the suc-
cess rate for 50 Hz images is always better than random guesses.
This suggests that even though the proposed entropy minimization
method was not designed to be biased toward low frequency, and
the experimental results for images with synthetic ENF traces do not
show such bias, the bias does exist when the entropy minimization
method is applied on the real-world camera images. Further inves-
tigations can be conducted to examine the impact of the modeling

1  2  4  8  16 32 64 128 256
# of columns

0  

0.2

0.5

0.8

1  

su
cc

es
s 

ra
te

better-than-   
random-guess   
above this line

exp bias: -3
exp bias: -2
exp bias: -1
exp bias: 0

(a)

1  2  4  8  16 32 64 128 256
# of columns

0

1

2

3

4

M
A

E
 (

in
 g

ra
y-

pe
l l

ev
el

)

exp bias: -3
exp bias: -2

(b)

1  2  4  8  16 32 64 128 256
# of columns

0.4

0.6

0.8

1

su
cc

es
s 

ra
te

exp bias = -3
exp bias = -2.4
exp bias = -2.1
exp bias = -1.8
exp bias = -1.5
exp bias = 0

(c)

1  2  4  8  16 32 64 128 256
# of columns

0

0.5

1

1.5

2

M
A

E
 (

in
 g

ra
y-

pe
l l

ev
el

) exp bias = -3
exp bias = -2.4
exp bias = -2.1
exp bias = -1.8
exp bias = -1.5
exp bias = 0

(d)

Fig. 4. Success rates for deciding images with (a) 60 Hz and (c)
50 Hz ENF traces as a function of the ENF strength and the num-
ber of columns used in the cost function. (b)(d) The corresponding
MAEs for the amplitude estimators.

mismatch, e.g., when the ENF signal captured in the image is not a
perfect sinusoid.

Discussions In addition to the additive model [11,12,17,18] that
is resilient to the global intensity bias used in this paper, we also tried
the multiplicative model that is resilient to albedo and illumination
changes. Our theoretical analysis showed that if the global intensity
bias of the camera captured and processed image is negligible com-
pared to the intensity of the content, the multiplicative model would
be precise. Our experimental results showed that an algorithm de-
veloped based on the additive model has a better performance on
real-world data than the multiplicative model.

It is important to recall the significant challenge in extracting
ENF signals from single images, as it is extremely difficult to over-
come the dominating visual content and reveal the weak ENF sig-
nals. In contrast, the ENF extraction from video [11, 17] can take
advantage of multiple frames to estimate the native visual content
and separate the ENF from the visual content. Despite the difficulty,
the results in this section have shown promising capability by our
proposed algorithms as the first attempt to tackle the challenge.

5. CONCLUSION

In this paper, we explored the use of an invisible power signature,
the ENF signal, that may be embedded in images acquired by CMOS
cameras for geo-tagging purposes. Specifically, we addressed a very
challenging research question of whether the basic attributes of an
embedded ENF signal can be correctly identified. We proposed the
entropy minimization method for parametric-surface–removed im-
ages. Experimental results show that method is able to make high
accuracy decisions when the ENF traces are strong. In this proof-of-
concept work, we have demonstrated a unique forensics capability
of extracting invisible traces to help narrow down the capturing ge-
ographic region of an image. The next step would be to examine
and improve the performance on a larger scale investigation with
more cameras and images, and explore additional location informa-
tion that can be inferred from the ENF traces in an image.
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