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ABSTRACT

With the coming of the era of big data, digital images are
growing explosively on the Internet. Traditional steganogra-
phy which embeds payload into one cover image is facing
new challenges. In fact, a steganographer could utilize mul-
tiple images to embed payload simultaneously. How to ful-
ly exploit image features to allocate payload for performance
enhancement is still an open issue. In this paper, we first es-
tablish a framework to formulate data embedding in multi-
ple images. Two new embedding strategies based on image
texture complexity and distortion distribution are designed
for payload distribution, which can be implemented togeth-
er with these state-of-art single image steganographic algo-
rithms. Experimental results demonstrate that two proposed
embedding strategies in multiple images steganography could
obtain better statistical undetectability.

Index Terms— Image steganography, multiple images,
embedding payload distribution, pooled steganalysis

1. MOTIVATIONS

Steganography is a technique which makes use of the redun-
dancy of digital medias to conceal secret information, so as
to achieve covert communication [1]. In recent years, many
effective image steganographic methods are proposed, includ-
ing HUGO [2], WOW [3], S-UNIWARD [4], HILL [5] and so
on. Note that these methods focus on embedding payload in
one cover image. However, the explosion of large-scale im-
ages has posted new challenges. It is more reasonable in prac-
tical application that a steganographer simultaneously embeds
payload into multiple images.

How to spread payload among multiple images is a chal-
lenging problem today [6]. Some embedding strategies are
proposed to realize multiple images steganography. Ker first
postulated it and utilized game theory to analyze, in which
the embedding payloads are spread based on the opponent’s
pooling evidence [7, 8]. Later, according to the principle that
the statistical detectability of payload is proportional to the
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square of embedding changes, the embedding payload is like-
ly to extremely concentrate in as few cover images as pos-
sible, or the opposite that the payload is spread as thinly as
possible [9]. Due to the lack of practical pooled steganalyzer,
the above theoretical results could not be validated. The blind
universal pooled steganalyzer was proposed [10], and some
data embedding strategies and corresponding experiments are
designed for massive JPEG images [11]. Cogranne et al. [12]
derived an optimal pooling function as a likelihood ratio in
the form of a matched filter by adopting a statistical model
for the output of the single-image detector, and then tested
several productive embedding strategies.

In this paper, on the assumption that the receiver is in-
formed of the embedding strategy, we attempt to present a
framework for multiple images steganography. We design
two new embedding strategies based on image texture com-
plexity and distortion distribution respectively. The former
one embeds payload into fewer number of cover images, and
the sub-payload for each cover image is equal to its esti-
mated capacity. A new estimation method of cover image
capacity is presented by using image entropy. In the latter,
we allocate embedding payload according to the distribution
of embedding distortion values. Two proposed strategies
could be incorporated with these state-of-the-art signal image
steganographic algorithms. Experimental results show that
two proposed embedding strategies could achieve better per-
formances against the modern universal pooled steganalysis.

The rest of the paper is organized as follows. We formu-
late the problem in section 2. In section 3, we propose two
embedding strategies and describe an intuitive embedding s-
trategy. The detailed experiments and comparative results are
given in section 4. Finally, the conclusions are made.

2. PROBLEM FORMULATION

A steganographer could spread payload among multiple im-
ages by the embedding strategy, and it is more suitable to the
practical application scenario. Given a cover image set X =
{x1, x2, · · · , xn} with capacities (c1, c2, · · · , cn), where n is
the number of cover images and the capacity ci is the max-
imum length of payload which can be embedded into cover
image xi. The total capacity of all cover images can be ex-
pressed as

∑n
i=1 ci. M is a given secret information set, and
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Fig. 1. The framework of multiple images steganography.

|M | denotes the length of secret information. Generally, we
suppose

∑n
i=1 ci � |M |, i.e., the total capacity of cover im-

ages is more than the length of embedding payload.
Let Ψ(•) represent a strategy for distributing payload. The

payload distribution associates with the image features IFX of
cover set X , and the payload distribution is shown as below.{

M∗ = Ψ(M,X, IFX) = {m1,m2, · · · ,mn}
|M | =

∑n
i=1 |mi|

(1)

where M∗ is the distributed sub-payload set, and mi is the
corresponding sub-payload of cover image xi.

The steganographer could embed sub-payloads into the
corresponding cover images by different embedding algo-
rithms, because the embedding operators are independent for
cover images. The stego image set XM can be obtained by{

XM = (x1,m1
, x2,m2

, · · · , xn,mn
)

xi,mi
= Emb(xi,mi)

(2)

where xi,mi
represents the stego image by embedding the

sub-payload mi into the cover image xi, and Emb(•) repre-
sents the embedding algorithm.

The stego image set XM is transmitted via communica-
tion channel. If |mi| = 0, it means the cover image xi that
are not embedded, i.e., xi = xi,mi

. The embedding strategy
is shared between the steganographer and receiver. After ac-
quiring the stego image set, the receiver could use the sharing
information to get the payload distribution, and then extract
each sub-payload by mi = Ext(xi,mi). The payload is ob-
tained by combining all sub-payloads.

Therefore, as shown in Fig. 1, the multiple images
steganography can be formulated by cover image set X ,
payload M , payload distribution strategy Ψ(•), embedding
algorithm Emb(•) and extracting algorithm Ext(•). It is
required to meet the following challenges:

Concealment: The images which are transmitted via the
internet may include cover and stego images. It is difficult for
attackers to differentiate stego images from innocent images.

Diversity: The embedding and extracting operations of
images are independent. The embedding and extracting algo-
rithms could be different for each image.

Multisource: Cover images could be in various formats,
and they can be acquired by different ways.

3. TWO PROPOSED EMBEDDING STRATEGIES
FOR MULTIPLE IMAGES STEGANOGRAPHY

In this section, we propose two embedding strategies based
on image texture complexity (ES-ITC) and distortion distribu-
tion (ES-DD) to realize embedding payload distribution. We
also introduce an intuitive embedding strategy based on uni-
form payload distribution (ES-UPD) which will be compared
with the proposed strategies in the experiments. These em-
bedding strategies can be combined with these existing em-
bedding algorithms which focus on embedding in one cover
image, so as to achieve multiple images steganography.

3.1. The Proposed Embedding Strategy Based on Image
Texture Complexity

In the embedding strategy based on image texture complexity
(ES-ITC), we attempt to embed payload into fewer number of
cover images. We iteratively select the cover image with the
highest capacity to embed and allocate the sub-payload which
is equal to the maximum capacity for each image.

The maximum capacity depends on image content [11].
For images with the same size, the more complex the image
content is, the higher capacity the image has. In addition,
when images possess the same content, the larger image has
the higher capacity. Therefore, we estimate the capacity ci of
cover image xi by its size and image entropy which could rep-
resent image texture complexity well. Furthermore, we firstly
carry out a high-pass filter F to cover image xi in the image
set X to sharpen image texture, so that the image texture of
the filtered image can be captured more precisely.

Assuming that the size of image xi is ri × si, the gray
co-occurrence matrix is

P (u, v, d, θ) =
ξ{(a1, b1), (a2, b2)|xi(a1, b1)=u, xi(a2, b2)=v,
|(a1, b1)−(a2, b2)| =d,<(a1, b1), (a2, b2)>=θ }

(3)

where 1 ≤ a1, a2 ≤ ri, 1 ≤ b1, b2 ≤ si, ξ{W} represents
the number of elements in set W , xi(a1, b1), xi(a2, b2) are
two pixels in the positions (a1, b1), (a2, b2) of cover image
xi, and u, v are the corresponding pixel values. d is the dis-
tance between (a1, b1) and (a2, b2), and θ is the angle be-
tween the two points and abscissa axis. The co-occurrence
matrix P (u, v, d, θ) is applied to count the number of times
that the pixel values u and v appear simultaneously.

The entropy hi of image xi is computed on the basis of
the above gray co-occurrence matrix P (u, v, d, θ)

hi = −
∑
u

∑
v

P (u, v, d, θ) log2 P (u, v, d, θ) (4)

We set d = 1, θ = 0◦, 45◦, 90◦, 135◦ to get four image en-
tropies hi and compute the average h̄i for image xi.

Therefore, the image entropy of the cover image set X is
H = {h̄1, h̄2, · · · , h̄n}. Finally we calculate the capacity ci
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of image xi by using the below equation.

ci =
risi(h̄i − h̄min)

h̄max − h̄min
(5)

where h̄min and h̄max denote the minimum and maximum
value in H , respectively.

Suppose all cover images are sorted by their capacities
c1 ≥ c2 ≥ · · · ≥ cn. We embed the payload into the images
in front of the order, and the total capacity of these images
should be not less than the length of embedding payload. The
sub-payload of each image is equal to its estimated capacity.
Therefore, the payload distribution is shown as below.

|mi| =


ci i = 1, 2, · · · , p− 1

|M | −
∑p−1

i=1 |mi| i = p
0 i = p+ 1, p+ 2, · · · , n

(6)

where p represents the fewest number of cover images satis-
fying the payload requirement

∑p
i=1 ci ≥ |M |.

We could use these state-of-art single image stegano-
graphic algorithms to embed the sub-payload into each select-
ed image, so as to complete multiple images steganography.

3.2. The Proposed Embedding Strategy Based on Distor-
tion Distribution

The embedding strategy ES-DD mainly distributes the pay-
load depending on the distribution of embedding distortion
values. We calculate the distortion values ρi of cover image
xi by applying the cost function from the existing stegano-
graphic schemes. For example, the distortion values ρi can be
computed by adopting the cost function in HILL [5].

All pixels in the cover image set X are sorted in an as-
cending order based on their distortion values. We focus on
the first |M | pixels in the ascending order, where |M | is the
length of embedding payload. The payload distribution is de-
termined by the distribution of distortion values in the first
|M | pixels. We count the number ni of pixels for the image
xi, and the length of sub-payload mi will be equal to ni.

3.3. The Intuitive Embedding Strategy Based on uniform
payload distribution

In the intuitive embedding strategy based on uniform payload
distribution (ES-UPD), the embedding payload is distribut-
ed uniformly into all cover images. Thus, the length of sub-
payload for each image can be computed by |mi| = |M |/n.

The only requirement is that the sub-payload mi cannot
exceed the capacity ci of its corresponding image, i.e., |mi| ≤
ci. Otherwise, we set |mi| = ci and recalculate the average
amount of sub-payload for the remaining images.

4. EXPERIMENTAL RESULTS

In this section, some comparative experiments are present-
ed to prove the effectiveness of two proposed embedding s-
trategies ES-ITC and ES-DD. Section 4.1 gives the detailed
experimental procedures including the parameter setting, the
embedding processes and pooled steganalysis. The experi-
mental results and analyses are shown in section 4.2.

4.1. Experimental Procedures

In our experiments, the embedding algorithms WOW [3] and
HILL [5] are combined with the proposed embedding strate-
gies ES-ITC and ES-DD. The testing images are 10000 gray-
scale images with the size of 512 × 512 from the BOSSBase
set [13]. We adopt the blind universal pooled steganalysis
[11] for evaluating the security and undetectability of these
steganographic methods. Suppose that there are some actors
and each of them transmits multiple images. All images are
detected by the steganalyst, and he knows the images that
each actor sent. The aim of the pooled steganalysis is to iden-
tify a guilty actor or actors, who have executed steganograph-
ic operations on the corresponding images. The LOF method
[14] is used to measure the possibility that an actor is guilty.
The evaluation criterion is the guilty actor ranking. The better
the guilty actor ranking, the higher possibility that the guilty
actor is to be identified, i.e., the lower security performance
of the steganographic methods.

We vary the number of actors na ∈ {10, 20, 30, 40, 50}.
For each na, divide the 10000 images into na groups, each of
which is assigned to one of the actors randomly. In the experi-
ments, the number of guilty actors is set as 1, because the per-
formance of the universal pooled steganalyzer is best in this
case [10]. We carry out the experiments by adopting all pairs
of the embedding strategies ES-ITC, ES-DD, ES-UPD and
the embedding algorithms WOW, HILL for different number-
s of actors. The payloads are 0.1, 0.2, 0.3, 0.4, 0.5 bpp (bits
per pixel). The detailed procedures are as below.

1) Select the number na of actors, and randomly divide
the 10000 images into na groups. The number of cover im-
ages per actor is 10000/na.

2) Randomly assign and record a guilty actor from na ac-
tors. The guilty actor embeds payload into cover images by
using a pair of the embedding strategy and algorithm.

3) Since SRM steganalytic method [15] could detect the
tested embedding algorithms precisely, we use it to extract
34671-dimensional features for all images.

4) Group the extracted features by actor, and calculate the
distances between all pairs of two actors based on their fea-
tures using the maximum mean discrepancy [16].

5) We compute the guiltiness of each actor by using LOF
method. According to the record in step 2, the guilty actor’s
ranking is obtained.

Repeat the above experiment ten times to average the LOF
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Table 1. Experimental results by combining ES-ITC with
WOW against the universal pooled steganalysis. The under-
line results are the average LOF values of the guilty actor.

Ranking 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
1 1.2399 1.2398 1.2380 1.2586 1.2340
2 1.1261 1.1339 1.2128 1.2324 1.2312
3 1.1183 1.1183 1.1904 1.2299 1.2056
4 1.1183 1.1183 1.1166 1.1116 1.0874
5 1.0783 1.1170 1.1166 1.1116 1.0874
6 1.0526 1.0527 1.0512 1.0464 1.0563
7 1.0222 1.0161 0.9939 1.0080 1.0484
8 0.9781 0.9780 0.9623 0.9444 0.9307
9 0.9501 0.9501 0.9487 0.9340 0.9137

10 0.8610 0.8609 0.8597 0.8558 0.8372

(a) (b)

Fig. 2. Comparisons of ES-ITC, ES-DD, ES-UPD with
WOW (a), HILL(b) when the numbers of actors are 10 (red
color), 20 (blue color) and 40 (green color).

(a) (b)

Fig. 3. Comparisons of ES-ITC, ES-DD, IMS with WOW
(a), HILL (b) when the number of actors is 20. The number
of cover images per actor is 100 (red color), 200 (blue color).

values of all actors. We obtain the average ranking of the
guilty actor over 10 random assignations of images to actors.

4.2. Comparison Results

This section mainly shows the comparison experimental re-
sults to testify the security performances of ES-ITC, ES-DD.

The security performances are compared based on the
guilty actor rankings. Take Table 1 as an example. The num-
ber na of actors is 10, and the LOF values of 10 actors are
shown under the five payloads by combining the embedding
strategy ES-ITC and the embedding algorithms WOW. The
LOF values of the actors with the same payload are sorted in
a descending order. The underline results are the LOF values
of the guilty actor (the steganographer). The guilty actor
rankings are 7, 7, 7, 7, 3 in this case.
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Fig. 4. The numerical distribution of payload among 200 im-
ages for these embedding strategies.

More scenarios with different numbers of actors are taken
into account, na = 10, 20, 30, 40, 50. Due to space limita-
tions, we only include the most interesting results regarding
the proposed strategies. Fig. 2(a) and Fig. 2(b) show the
comparison results when we combine ES-ITC, ES-DD, ES-
UPD with WOW, HILL respectively. From the figures, it can
be found that for the same number of actors and payload, the
guilty actor rankings obtained by ES-ITC, ES-DD are worse
than that of ES-UPD. The guilty actor is more likely to be i-
dentified by using ES-UPD. Thus, two proposed embedding
strategies ES-ITC, ES-DD perform better than the intuitive
strategy ES-UPD against the universal pooled steganalysis.

Furthermore, we compare ES-ITC, ES-DD with the ex-
isting embedding strategy IMS [12]. Fig. 3 indicates the se-
curity performance of ES-DD is similar to that of IMS, and
the performance of ES-ITC is somewhat worse than that of
IMS. Fig. 4 shows the numerical distribution of payload a-
mong 200 cover images for these embedding strategies when
the payload is 0.2 bpp. ES-ITC tends to embed payload into
fewer textured images, and some other images are not con-
cealed. ES-DD is similar to IMS, and both of them are differ-
ent from the uniform intuitive payload distribution. Similar
results have been observed for other cases.

5. CONCLUSIONS

In this paper, we focus on investigating the embedding pay-
load distribution in multiple images steganography. We
briefly present a framework for data embedding in multi-
ple images. Two new embedding strategies based on image
texture complexity and distortion distribution are proposed
for payload distribution. Experimental results show that the
proposed embedding strategies achieve better performances
on resisting the modern universal pooled steganalysis.

We believe that multiple images steganography is of sig-
nificance to both theoretical approaches and practical imple-
mentations. A lot of further works need to be done in this
direction. Some effective embedding strategies DeLS, DiLS
[12] should be investigated with these modern embedding al-
gorithms, such as MVGG [17], MiPOD [18]. The new pooled
steganalysis based on the sequential [19] should also be used
to evaluate the security and undetectability.
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