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ABSTRACT

We investigate secure communication over a channel that un-
dergoes two different classes of attacks at the same time: pas-
sive eavesdropping and active jamming. This scenario is per-
fectly modeled by the concept of arbitrarily varying wiretap
channels (AVWCs). We derive a full characterization of the
secrecy capacity of AVWCs under list decoding. We show
that the list secrecy capacity is either equivalent to the corre-
lated random secrecy capacity or zero depending on the or-
der of symmetrizability of the legitimate AVC. Differently
from correlated random codes, our coding scheme does not
assume any restrictions on the communication between the
eavesdropper and the jammer.

Index Terms— Arbitrarily varying wiretap channel, list
decoding, strong secrecy.

1. INTRODUCTION

Information theoretic security is one of the most active re-
search field nowadays [1]. It was first initiated by Wyner in
[2], where he studied secure communication over a wiretap
channel with a passive eavesdropper, where the channel state
is perfectly known. This assumption is not suitable for real
life scenarios, where it is very difficult to acquire a perfect
channel state information because the channel usually varies
rapidly over time. Additionally, many channels suffer from
the presence of active jammers who are capable of mali-
ciously manipulating the channel state in each channel use
[3]. In order to capture such effects, the model of the arbitrar-
ily varying channel (AVC) [4, 5, 6] and the arbitrarily varying
wiretap channel (AVWC) [3, 7, 8] are considered.

It was shown in [6] that uncorrelated codes fail to es-
tablish reliable communication over symmetrizable AVCs,
where the jammer can selects a channel state that emulates
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a valid channel input. In order to overcome this issue, cor-
related random codes were used [4]. However, the usage
of such codes requires the existence of a common random
source which is only shared between the transmitter and the
receiver and must be kept unknown to the jammer. It was also
shown that the amount of common randomness needed grows
unbounded with the block length of the code. Consequently,
correlated random codes are not always feasible in practice.
As an alternative, list codes have been used to establish a
reliable communication over AVCs [9, 10]. For a given AVC,
it was shown that if the list size is greater than the order
of symmetrizability of the channel, then the list capacity is
equivalent to the correlated random capacity, where the order
of symmetrizability identifies the number of valid channel
inputs that an AVC can emulate.

The previous results motivated many researchers to in-
vestigate secure communication over AVWCs as well. In
[11, 12], a full characterization of the correlated and uncorre-
lated secrecy capacities were given. In this paper, we extend
these results and present a full characterization of the list
secrecy capacity of an AVWC. In particular, we show that if
the list size is greater than the order of symmetrizability of
the legitimate channel, then the list secrecy capacity is equiv-
alent to the correlated random secrecy capacity, otherwise it
is zero. This result was first established in [13] by using a
coding scheme that combines public list codes and correlated
random codes. In this paper, we establish the achievability
part of the secrecy capacity using a coding scheme based on a
secure list code only and is totally independent of the concept
of correlated random codes. Our result is also a continuation
of our previous work in [14]. It is important to point out
here that although the problem of secure communication over
quantum AVWC has been recently solved in [15, 16, 17],
the extension of these results to list decoding seems to be a
very challenging problem. Moreover, the capacity regions for
transmitting different kinds of messages (public, private and
confidential) [18] over AVWCs is still unknown.

Before, we present our model, we need to highlight some
important notations. For every finite set A and n ∈ N,
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P(A) denotes the set of probability distributions on A, while
Pn0 (A) denotes the set of empirical distributions arising from
all elements an ∈ An. For two conditional distributions
p ∈ P(A|B) and q ∈ P(B|C), we define p ◦ q ∈ P(A|C)
to be a conditional distribution given by p ◦ q(a|c) =∑
b∈B p(a|b)q(b|c). While, for the distributions p ∈ P(A)

and q ∈ P(B), we define p⊗q ∈ P(A×B) to be the product
distribution defined as follows: p⊗q(a, b) = p(a)q(b). Addi-
tionally, we define the conditional distribution Id ∈ P(A|A),
where Id(a|ā) = 1 if and only if a = ā.

2. SYSTEM MODEL

2.1. Arbitrarily Varying Wiretap Channels

Consider a communication scenario in which the channel un-
dergoes two classes of attacks at the same time. The first
attack is carried out by an active adversary also known as
the jammer that can maliciously manipulate the channel state
for each channel use. Simultaneously, a passive eavesdropper
tries to extract some information about the transmitted mes-
sage. This scenario is perfectly modeled by the concept of
AVWCs as follows: For a finite state set S, the jammer se-
lects a certain channel state sequence sn ∈ Sn of length n,
which identifies the legitimate channel Wn

sn(yn|xn) and the
eavesdropper channel Vn

sn(zn|xn), for all input and output
sequences xn ∈ Xn, yn ∈ Yn and zn ∈ Zn.

Definition 1. A discrete memoryless arbitrarily varying wire-
tap channel (AVWC) is denoted by the pair (W,V) and is
given by the family of pairs with common input as

(W,V) = {(Wn
sn ,V

n
sn) : sn ∈ Sn}.

Our aim is to establish a reliable communication between
the transmitter and the legitimate receiver for all state se-
quences sn ∈ Sn selected by the jammer, while keeping the
eavesdropper completely ignorant about the transmitted infor-
mation. In order to understand the role played by the jammer,
we need to highlight the concept of a symmetrizable AVC as
introduced in [6].

Definition 2. An AVC W is symmetrizable if, there exists an
auxiliary channel σ : X → P(S) such that∑

s∈S
Ws(y|x)σ(s|x̃) =

∑
s∈S

Ws(y|x̃)σ(s|x) (1)

holds for every x, x̃ ∈ X and y ∈ Y .

The condition in (1) implies that a symmetrizable AVC
can emulate a valid channel input making it impossible for
the decoder to differentiate between the channel input x and
the channel state s. It has been shown that uncorrelated codes
with a pre-specified encoder-decoder pair fail to establish a
reliable communication over AVWCs, if the legitimate AVC

W is symmetrizable [7, 12]. Unfortunately, a lot of chan-
nels of practical relevance fall into the class of symmetrizable
channels [19]. To overcome this issue, correlated random
codes in which the transmitter and the receiver coordinate
their choice of an encoder-decoder pair based on a particular
realization of a shared common randomness were used. How-
ever, correlated random codes only work under the assump-
tion of restricted communication between the eavesdropper
and the jammer [20].

2.2. List Codes

List codes are a special class of uncorrelated codes, in which
the decoder outputs a list of L possible messages, instead of
deciding on exactly one message. They have been used to
overcome the problem of uncorrelated codes with symmetriz-
able AVCs [9, 10]. In this paper, we extend this usage to the
problem of secure communication over AVWCs.

Definition 3. A list code Clist with list size L for the AVWC
(W,V) consists of: a set of confidential messages M, a
stochastic encoder E : M → P(Xn), and a list decoder
ϕL : Yn → PL(M), where PL(M) is the set of all subsets
ofM with cardinality at most L.

The reliability performance of Clist is measured in terms
of its average error probability ēL(Clist) as follows:

ēL(Clist) = max
sn∈Sn

ēL(sn|Clist)

= max
sn∈Sn

1

|M|
∑
m

∑
xn

∑
yn:ϕL(yn) 63m

Wn
sn(yn|xn)E(xn|m).

On the other hand, the secrecy performance of Clist is guaran-
teed by assuring that the information leakage of the confiden-
tial message M to the eavesdropper with respect to the strong
secrecy criterion is small as follows:

lim
n→∞

max
sn∈Sn

I(M; Znsn |Clist) = 0, (2)

where Znsn is the channel observation of the eavesdropper for
state sequence sn.

Definition 4. A non-negative number R is an achievable list
secrecy rate for the AVWC (W,V) with list size L, if for all
τ > 0 and all λ, δ ∈ (0, 1), there is an n(τ, λ, δ) ∈ N, such
that for all n > n(τ, λ, δ), there exists a sequence of list codes
(Clist)n, that satisfies the following:

1

n
log
|M|
L
≥ R− τ (3)

max
sn∈Sn

ēL(sn|Clist) ≤ λ (4)

max
sn∈Sn

I(M; Znsn |Clist) ≤ δ. (5)

The list secrecy capacity CS(W,V, L) is given by the supre-
mum of all achievable list secrecy rates R.
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In order to investigate the list capacity region, we need a
generalization of the concept of symmetrizability as follows:

Definition 5. An AVC W is L-symmetrizable, if there exists
an auxiliary channel σ : XL → P(S), such that for every
permutation π of the sequence (1, . . . , L+ 1)∑

s∈S
Ws(y|x1)σ(s|x2, . . . , xL+1) =∑

s∈S
Ws(y|xπ(1))σ(s|xπ(2), . . . , xπ(L+1)) (6)

holds for every xL+1 ∈ XL+1 and y ∈ Y .

For a given AVC, the largest L for which this AVC is L-
symmetrizable is called the order of symmetrizability and is
denoted by L(G).

3. LIST SECRECY CAPACITY OF THE AVWC

3.1. Main Result

For an AVWC (W,V), we define the following multi-letter
expression:

C∗S(W,V) = lim
n→∞

1

n
max

p∈P(Un)
max

pn∈P(Xn|Un)(
min

q∈P(Sn)
I(Un; Yn

q )− max
sn∈Sn

I(Un; Znsn)
)
. (7)

Theorem 1. The list secrecy capacity CS(W,V, L) of the
AVWC (W,V) is characterized by the following:

CS(W,V, L) =

{
0 if L ≤ L(G)

C∗S(W,V) if L > L(G).

Theorem 1 implies that for an AVWC with an order of
symmetrizability L(G), a list code with list size L > L(G)
can provide a reliable and secure communication at the rate
given by (7) which is equivalent to the correlated random
secrecy capacity cf. [12]. This implies that with the proper
selection of the list size L, we can always achieve the cor-
related random secrecy capacity even in the absence of a
shared randomness between the transmitter and the legitimate
receiver. Additionally, list codes do not enforce any restric-
tions on the communication between the eavesdropper and
the jammer.

Coding Problem: We consider a coding scheme that
combines the reliability list decoding scheme for a non L-
symmetrizable AVC introduced in [10] and the strong secrecy
techniques introduced in [11, 12]. The main issue of using
this approach is that the rate in (7) is calculated with respect
to the AVWC (W ◦ pn,V ◦ pn) that arises from using the
prefix channel P(Xn|Un). It was shown in [12] that using
a prefix channel can change a non-symmetrizable AVC to

a symmetrizable one. This implies that, even if W is not
L-symmetrizable, W ◦ pn might be one.

In order to solve this issue, we adapt the coding technique
introduced in [12] to the concept of list decoding as follows:
We restrict the calculation of C∗S(W,V) to a family of prefix
channels given by p′n = Id ⊗ p2,...,n. We then show that
calculating C∗S(W,V), using this family of prefix channels is
asymptotically as good as using the full set of prefix channels
P(Xn|Un). In addition, this family of prefix channels assures
that W ◦ p′n is not L-symmetrizable as long as W is not.

3.2. Important Tools

Before we present the proof of Theorem 1, we need to high-
light some of the main tools that play an important role in
establishing our coding theorem.

Lemma 1. [9, Lemma 1] [10, Lemma 4] For a given AVC W,
if W is L-symmetrizable, then the list capacity with list size L
vanishes, i.e. C(W, L) = 0.

This lemma is an extension of the result established in [6,
Theorem 1], where it was shown that symmetrizability makes
it impossible to establish a reliable message transmission us-
ing uncorrelated codes.

Lemma 2. [10, Lemma 3] For an AVC W with an order of
symmetrizability L(G), let L = L(G) + 1. Then for any
δ, γ > 0, there exists a list code Clist with list size L and block
length n such that ēL(Clist) < 2−nγ , as long as

min
q∈P(S)

I(X; Yq)− δ <
1

n
log
|M|
L

< min
q∈P(S)

I(X; Yq)−
2δ

3
.

This lemma was proved in [10] by using a collection of
codewords xn(m) that satisfy the constraints in [10, Lemma
4]. In addition to the previous two lemmas, we will need to
extend the list decoder introduced in [10, Definition 4] such
that instead of having one message m ∈ M, we have a two
messages m ∈ M and mr ∈ Mr. Finally, we highlight the
following secrecy lemma:

Lemma 3. [12, Lemma 2] For any τ > 0, there exists a value
δτ > 0 and an n0(τ), such that for all n ≥ n0(τ), there exist
codewords xn(m,mr) ∈ T nX ⊂ Xn where T nX is the set of
typical sequences of length n, such that for an AVC V, we
have for all sn ∈ Sn and m ∈M

if
log |Mr|

n
≥ max
q∈P(S)

I(X; Zq) + τ , then∥∥∥∥∥∥ 1

|Mr|

|Mr|∑
mr=1

Vsn(·|xn(m,mr))− E [Vsn(·|Xn)]

∥∥∥∥∥∥
1

≤ 2−nδτ

where E[·] is the expectation, Xn is distributed according to
P(Xn = xn) := 1

|T nX |
1T nX (xn) and limτ→0 δτ = 0.
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3.3. Proof of Theorem 1

For the achievability, we will only focus on the case where
the AVC W is not L-symmetrizable and present the follow-
ing coding scheme:

1) Prefix Channel: We start by considering the input dis-
tributions p and the conditional distributions pn arising from
the optimization problem in (7). Without loss of generality,
for every r ∈ N, let Ur = X r and define the following:

Cr := max
p∈P(Ur)

max
pr∈P(X r|Ur)(

min
q∈P(Sr)

I(Ur; Yr
q)− max

sr∈Sr
I(Ur; Zrsr )

)
, (8)

where Wr
q(y

r|xr) =
∑
sr q(s

r)Wr
sr (y

r|xr). Then, for an
arbitrary but fixed r ∈ N and an arbitrary ε ≥ 0, let p∗ ∈
P(Ur) and p∗r ∈ P(X r|Ur) be such that

Cr − ε = min
q∈P(Sr)

I(U∗r ; Yr
q)− max

sr∈Sr
I(U∗r ; Zrsr ).

Now, let p̃ ∈ P(Ur+1), such that p̃ := π ⊗ p∗, where π ∈
P(X ) is defined as π(x) := |X |−1 and p̃r+1 ∈ P(X r+1|X ×
Ur), such that p̃r+1 := σ⊗p∗r , where σ ∈ P(X|X ) is defined
as σ(x|x̄) = 1 iff x = x̄. Then, from (8), it holds that

Cr+1 ≥ min
q∈P(Sr+1)

I(Ũr+1; Yr+1
q )− max

sr+1∈Sr+1
I(Ũr+1; Zr+1

sr+1)

(a)
= min

q∈P(Sr+1)
I(U∗rXπ; Yr+1

q )− max
sr+1∈Sr+1

I(U∗rXπ; Zr+1
sr+1)

(b)

≥ min
q∈P(Sr)

I(U∗r ; Yr
q)− max

sr∈Sr
I(U∗r ; Zrsr )− log |X |

= Cr − ε− log |X | (9)

where (a) follows from the definition of p̃ and p̃r+1; (b)
follows from the mutual information chain rule and the fact
that I(Xπ; Zs1) ≤ log |X |. Since W is not L-symmetrizable,
it follows that for every r ≥ 2, the AVC (W⊗r ◦ p̃r) is not
L-symmetrizable as well.

2) Coding for the AVWC (W⊗r ◦ p̃r,V⊗r ◦ p̃r): For ev-
ery t ∈ N and r ∈ N\{1}, let p ∈ Pt0(Ur) and use it to
construct the set of codewords utr(m,mr) ∈ Tp ⊂ U tr , for
m ∈M andmr ∈Mr. Using the union bound, we can show
that the constructed codewords will satisfy the constraints in
[10, Lemma 4] and Lemma 3 with probability approaches
one as t → ∞. Now, given a confidential message m ∈ M,
the encoder chooses a randomization message mr ∈ Mr

uniformly at random then outputs the codeword utr(m,mr).
At the legitimate receiver, we use a list decoder ϕL similar to
the one given by [10, Definition 4].

3) Reliability and secrecy analysis: Since the AVC (W⊗r◦
p̃r) is not L-symmetrizable, Lemma 2 implies that there ex-
ists a list code with list size L and block length t which can
be used to transmit the messages (m,mr) reliably, if

lim inf
t→∞

1

t
log
|M||Mr|

L
= min
q∈P(Sr)

I(Ur; Yr
q)− δ. (10)

On the other hand, based on Lemma 3 along with the secrecy
analysis in [12], the constructed code is asymptotically secure
in the strong sense, as long as

lim inf
t→∞

1

t
log |Mr| ≤ max

sr∈Sr
I(Ur; Zrsr ) + 2δ. (11)

Now, let p ∈ Pt0(Ur) converges to p̃ ∈ P(Ur), such that
p̃ = p∗ ⊗ π, where π is as defined before and p∗ ∈ P(Ur−1)
being an optimal choice for the optimization problem in (8),
then from (9), (10) and (11) we have

lim inf
t→∞

1

t
log
|M|
L
≥ Cr−1 − log |X | − 3δ. (12)

4) From (W⊗r ◦ p̃r,V⊗r ◦ p̃r) to (W,V): Let t̃ ∈ {0,
. . . , r−1}, such that for every n ∈ N, we define n = t · r+ t̃.
Since we assumed without loss of generality that Ur = X r,
we can transform the constructed codewords utr(m,mr) into
xt·r(m,mr). We then construct the codewords xn(m,mr)
for m ∈ M and mr ∈ Mr by concatenating a dummy
codeword xt̃ to the transformed codeword xt·r(m,mr). One
can easily show that the dummy codeword xt̃ will not affect
the reliability and secrecy performance of the original code.
This implies that the achievable rate for the AVWC (W,V)
is given by:

R = lim inf
n→∞

1

n
log
|M|
L

= lim inf
t→∞

1

t · r + t̃
log
|M|
L

≥ lim inf
t→∞

1

r
· 1

t
· t

t+ 1
log
|M|
L

= lim inf
t→∞

1

r
· 1

t
log
|M|
L

=
1

r
(Cr−1 − log |X | − 3δ). (13)

Since limr→∞
r−1
r = 1, it follows that CS(W,V, L) ≥

limr→∞
1
rCr. This completes our achievablity proof. One

the other hand, the converse follows using the same steps
used to establish the converse of the correlated random se-
crecy capacity in [11, Section VIII].

Finally, we need to highlight the main difference between
this achievability proof and the one presented in [13] and why
it is better to use a coding scheme like the one presented in
this paper. In [13], we used a coding scheme that is based
on the concatenation of a public list code and a correlated
random secrecy code, where the public list code is used to
establish the necessary common randomness required. Due
to the dependence of this coding scheme on correlated ran-
dom codes, it is only valid under the assumption of restricted
communication between the jammer and the eavesdropper.
Differently, the coding scheme presented in this paper is
based on a pure list secrecy code. Thus, even if the eaves-
dropper and the jammer cooperate together, we can establish
a reliable and secure communication over an AVWC.
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