
DEEP FEATURE EMBEDDING LEARNING FOR PERSON RE-IDENTIFICATION USING
LIFTED STRUCTURED LOSS

Zhangping He†, Zhendong Zhang† and Cheolkon Jung

School of Electronic Engineering, Xidian University, Xian, Shaanxi 710071, China
zhengzk@xidian.edu.cn

ABSTRACT

In this paper, we propose deep feature embedding learning
for person re-identification (re-id) using lifted structured loss.
Although triplet loss has been commonly used in deep neural
networks for person re-id, the triplet loss-based framework
is not effective in fully using the batch information. Thus,
it needs to choose hard negative samples manually that is
very time-consuming. To address this problem, we adopt
lifted structured loss for deep neural networks that makes
the network learn better feature embedding by minimizing
intra-class variation and maximizing inter-class variation.
Extensive experiments on CUHK03, CUHK01 and VIPeR
datasets demonstrate the superior performance of the pro-
posed method over state-of-the-arts in terms of the cumulative
match curve (CMC) metric.

Index Terms— Person re-identification, convolutional
neural networks, deep learning, lifted structured loss, triplet
loss

1. INTRODUCTION

Person re-id or person retrieval, which matches pedestrians
from different video cameras, has wide application in video
surveillance. It is a challenging task because of large varia-
tions in viewpoint and lighting across different views. Most
existing methods primarily focus on either feature extraction
or similarity measurement. Feature extraction is to find fea-
tures that are robust to challenging factors as well as discrimi-
native to different identities. Unfortunately, it is still extreme-
ly hard to design a feature that is distinct, reliable and in-
variant to severe variations and misalignment across disjoint
views. Similarity measurement aims to learn a optimal metric
under which instances belonging to the same person are clos-
er than different persons. These approaches typically extrac-
t hand-crafted features from the training dataset, and subse-
quently learn the metrics. However, if feature representation
is not reliable, some useful information would be lost in the
first step, and it cannot be expected that the learned metric in
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the second step would have desirable performance. Thus, it
would be a good choice to jointly learn feature representation
and metric. Recently, thanks to the available of large per-
son re-id datasets such as CUHK03 [1] and Market1501 [2],
and the great success of deep learning approaches in various
computer vision tasks, a lot of deep learning-based person
re-id approaches have been proposed [3, 4], which have made
great progress in performance. There are two common frame-
works in deep learning-based re-id. One of them is to use a
part of the network as a feature extractor and to measure the
similarity between two images with metric learning such as
image pair verification loss [5]. These models are trained in
cross-image representation, resulting in expensive computa-
tional cost in a real test. This is because each probe needs to
go through the network paired with every gallery image. Oth-
er deep learning-based methods directly train a desired deep
feature embedding which minimizes intra-class distance and
maximizes inter-class distance. Among them, deep learning
approaches with a contrastive or triplet loss becomes a popu-
lar framework for person re-id and demonstrates superior per-
formance [6, 7, 8]. The contrastive loss or triplet loss makes
it possible to perform end-to-end learning between the input
images and the desired embedding space such that the same
person are mapped into nearby points while different people
are mapped apart from each other. However, the results are
often unsatisfactory if we naively apply it to the person re-
id problem. This is because the possible number of triplets
grows exponentially as the number of dataset increases. Most
of them are redundant, which makes training quickly stag-
nate. Therefore, some researchers take a hard triplet mining
strategy [6, 7]. However, mining such hard triplets is time-
consuming, and selecting too hard triplets often makes the
training procedure unstable. Thus, Shi et al. [9] have pro-
posed a moderate method for positive sample mining to s-
elect positive samples that are between the hardest positive
samples and the hardest negative samples, which shows bet-
ter and more stable training results.

In this paper, we propose deep feature embedding learn-
ing for person re-id using lifted structured loss. We apply the
lifted structured loss [10] to person re-id that fully uses the
information of each batch, and thus both hard sample mining
and moderate sample mining are not needed. We verify that

1957978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



128

3
Conv 1-3
Pool 1
(2, 2) stride 2

32

64

12

32

Conv 4-5
Pool 2
(2, 2) stride 2

Conv 6-7
Pool 3
(2, 2) stride 2

192 6

16

Conv 8-9
Pool 4
(2, 2) stride 2

384
3
8

512

Feature 
Embedding 

N

Identification 
Loss

Structured 
Loss

96

48

24

Fig. 1. Illustration of the proposed network architecture.

the lifted structured loss is superior to naive contrastive loss
and triplet loss in both accuracy and training speed. More-
over, we combine the lifted structure loss and identification
loss that are complementary [11, 12, 13]. Experimental re-
sults demonstrate that the proposed method achieves better
performance than the state-of-the-art ones for person re-id.
Fig. 1 illustrates the entire framework of the proposed person
re-id based on lifted structure loss. Compared with the exist-
ing methods, the main contributions of this paper are summa-
rized as follows:

• We adopt the lifted structured loss for person re-id and
verify its superiority over contrastive and triplet losses.

• We combine the lifted structured loss with the iden-
tification loss to consider both relative information of
sample pairs (positive or negative) and true identity in-
formation.

2. PROPOSED METHOD

Triplet Loss [14] was first introduced by F. Schroff for face
recognition and clustering, which is trained on the triplet data{(
xia, x

i
p, x

i
n

)}
where

(
xia, x

i
p

)
is from the same class, while

the term of
(
xia, x

i
n

)
is from different classes. Intuitively, the

metric embedding learning encourages to learn a function f
which maps semantically similar points to the data manifold
onto metrically close points, and maps semantically different
points from the data manifold onto metrically distant points.
The loss function is defined as follows:

Ltriplet =
1

2m

m∑
i=1

[
D2
ia,ip −D2

ia,in + α
]
+

(1)

whereD2
ia,ip =

∥∥f (xia)− f (xip)∥∥22,m is the batch size, and
α > 0 controls the margin of triplet loss. The [·]+ operation
indicates the hinge function max(0, ·). In this work, we nor-
malize the learned features f so that the range of D2 is [0,4].
It can be observed that traditional triplet loss is not able to
make full of the training batch. If the batch size ism, then the
number of triplets is m/3. To solve this problem, the lifted
structured loss has been proposed by Song et al..

Lifted Structured Loss [10] boosts the vector of pair-
wise distances within the batch to the matrix of pairwise dis-
tances to take full advantage of the training batch. The loss
function is defined as follows:

Li,j = max

(
max

(i,k)∈N̂
α−Di,k, max

(j,l)∈N̂
α−Dj,l

)
+Di,j

Llifted =
1

2|P̂ |

∑
(i,j)∈P̂

max (0, Li,j)
2

(2)

where P̂ is the set of positive pairs and N̂ is the set of nega-
tive pairs in the training set. The lifted structured loss makes
full use of the batch by transforming a training batch of sam-
ples into a fully connected dense matrix of pairwise distances.
However, this loss causes two computational challenges: (1)
It is non-smooth, and (2) both evaluating it and computing its
sub-gradient require to traverse all pairs of examples several
times. Thus, a smooth upper bound on the function is used
for the lifted structured loss is defined as follows:

L̃i,j = log

 ∑
(i,k)∈N̂

eα−Di,k +
∑

(j,l)∈N̂

eα−Dj,l

+Di,j

L̃lifted =
1

2|P̂ |

∑
(i,j)∈P̂

max (0, Li,j)
2

(3)

Improvement of Lifted Structured Loss: It can be ob-
served that the number of summation terms is uncertain in the
first formula in Eq. (3) since the number of negative samples
relative to the positive pairs is variable. Thus, it is not able
to balance between log term and Di,j . To tackle this prob-
lem, we propose to calculate the mean of log term so that the
range of log term in L̃i,j keeps within [α−4, α] by preventing
the variation with the number of negative pairs. Furthermore,
replacing Di,j with D2

i,j makes training converge easily and
achieves better results. Consequently, our loss function which
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is defined as follows:

Li,j = log

 1

|T̂i,j |

 ∑
(i,k)∈N̂

eα−D
2
i,k +

∑
(j,l)∈N̂

eα−D
2
j,l


+D2

i,j

Lstruct =
1

2|P̂ |

∑
(i,j)∈P̂

max (0, Li,j)

(4)

where |T̂i,j | is the number of negative samples corresponding
to positive pairs {i, j}. Triplet loss and lifted structured loss
only constrain the relative distance between samples. While
the identification label contains true identity information,
which is complementary with the structured loss. There-
fore, we define the loss function of the proposed network
architecture based on the combination of them as follows:

qi = softmax
(
WT
i f (x)

)
Lid =

∑
i

−pi log qi

L = Lstruct + λLid

(5)

where Wi is the i-th row of the parameter matrix of the last
classification layer, pi is the i-th value of identification label,
and λ is the parameter to balance two losses.

Network Architecture: Our CNN model is similar to [4]
for fair comparison. It is a single branch CNN which consists
of nine convolutional (Conv) layers, four max pooling (Pool)
layers, one fully connected (FC) layer, and a softmax classifi-
cation layer as illustrated in Fig. 1. All Conv layers use 3×3
filters with stride 1 and zero padding. All max pooling layers
have 2×2 filters with stride 2. Batch normalization is applied
after each Conv layer or FC layer to speed up training. Then,
LReLU is used after these layers as the non-linear activation
function. After the first FC layer, we obtain a 512 dimension-
al vector which is the feature embedding constrained by the
structured loss. Finally, we add a softmax classification layer
with N nodes, i.e. the number of the identities.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

We perform our experiments on three publicly available
datasets: CUHK03 [1], CUHK01 [15] and VIPeR [16]. For
CUHK03 [1], we simply train the model on its training
dataset using stochastic gradient descent with mini-batches.
Since the size of CUHK01 [15] and VIPeR [16] is small, we
adopt a deep transfer learning method similar to [17]. We
first pre-train the model on large person re-id datasets that
consists of CUHK03 [1] and Market1501 [2], then fine-tune
it on the corresponding training set. Note that a two-stepped
fine-tuning strategy from [17] is used in this work to conduct

more effective transfer learning.
Data Preparation: For all datasets, we resize all training im-
ages to 128× 48. Similar to [5], we sample 3 images around
an image center with small translation as well as augment
the data with images reflected on a vertical mirror. Finally,
we get 5 images with the size of 128 × 48 from the original
training image. All test images are resized to 128 × 48. The
mean of training data is subtracted by all images.
Evaluation Protocol: We adopt the widely used cumulative
match curve (CMC) metric [1] for quantitative evaluations.
Our evaluation is in single-shot. Single-shot setting assumes
that there exists only one image instance per person in each
camera viewpoint. For CUHK01 [15] and VIPeR [16], we
randomly select half persons for training and the remaining
half for testing. For CUHK03 [1], we randomly select 1260
persons for training and the remaining 100 persons for testing
following the protocol used in [1]. In the testing stage, we
input all the testing images to the CNN model to get feature
embedding, i.e. the output of FC1, for each of them. Then,
we normalize each embedding to an unit vector and comput-
er the CMC by ranking the L2 distance between query and
gallery features. We set λ to 1.0 and the initial learning rate
is 0.001, decayed by 0.1 after 20,000 iterations. We set α in
the structured loss to 3.0 and α in contrastive loss and triplet
loss to 1.0. Batch size is set to be 64 and the iteration number
is 30,000. We conduct two sets of experiments: 1) Evaluating
the proposed loss with other losses (e.g. contrastive loss and
triplet loss); 2) Comparing the proposed method with the
state-of-the-art re-id ones.

3.2. Performance Comparison Between Different Loss
Functions

To evaluate the performance of different loss functions, we
conduct experiments in the same CNN architecture. The only
difference is that contrastive loss architecture is a two-branch
siamese network and triplet loss architecture is a three-branch
siamese network. Fig. 2 shows performance comparison be-
tween them on CUHK03. It verifies that the proposed struc-
tured loss is superior to triplet loss and contrastive loss. More-
over, the combination of structured loss and identification loss
achieves better performance in person re-id.

3.3. Performance Comparison with the State-of-the-Arts

CUHK03: The CUHK03 [1] dataset contains 13,164 pedes-
trian images, which were taken from 1,360 persons by two
surveillance cameras. On average, there are 4.8 images per
identity in each view. The dataset provides both manually
cropped bounding boxes and automatically cropped ones by
a pedestrian detector. We show experimental results on both
versions of the data, i.e. Labeled and Detected. From Table
1, it can be seen that the proposed method achieves the best
accuracy in rank 1, rank 5 and rank 10 on Labeled CUHK03,
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Fig. 2. Comparisons between different loss functions.

Table 1. Accuracy Comparison on CUHK03 (Labeled)
methods rank1 rank5 rank10

kLFDA[18] 48.20 59.34 66.38
IDLA[5] 54.74 86.50 94.00

NullRe-id[19] 58.90 85.60 92.45
Ensembles[20] 62.10 89.10 94.30

Gated Siamese[3] 68.10 88.10 94.60
NX-Corr M[21] 72.43 95.51 98.40

Proposed 81.9 96.7 98.7

over most latest state-of-the arts. Also, our method outper-
forms most state-of-art ones in terms of rank 5 and rank 10 on
Detected CUHK03 as shown in Table 3, while performs a lit-
tle worse than [4] in rank1. Note that we do not compare with
[17] because they use extra ImageNet data for pre-training.

CUHK01: CUHK01 dataset contains 971 persons cap-
tured from two camera views in a campus environment. Each
person has four images with two from each camera. Table
2 shows person re-id results by the proposed method. Com-
pared with the state-of-the-art methods, the proposed method
achieves the best accuracy in rank 1, rank 5 and rank 10.

VIPeR: VIPeR dataset contains two views of 632 person-
s. It is one of the most challenging dataset for the person re-id
task because there are only 316 identities for training with
one image per person in each view, giving a total of 316 posi-

Table 2. Accuracy Comparison on CUHK01
methods rank1 rank5 rank10
IDLA[5] 47.5 71.6 80.3

NullRe-id[19] 69.1 86.9 91.8
MCP-CNN[7] 53.7 84.3 91.0

NX-Corr M[21] 65.04 89.76 94.4
Proposed 70.2 90.2 95.5

Table 3. Accuracy Comparison on CUHK03 (Detected)
methods rank1 rank5 rank10
IDLA[5] 45.0 76.0 83.5

NullRe-id[19] 53.70 83.05 93.00
Siamese LSTM[24] 57.3 80.1 88.3
Joint Learning[25] 52.17 85.00 92.00
Gated Siamese[3] 61.8 80.9 88.3
NX-Corr M[21] 72.04 96.00 98.26

Improved Embedding [4] 82.1 96.2 98.2
Proposed 79.9 97.1 98.7

Table 4. Accuracy Comparison on VIPeR
methods rank1 rank5 rank10

Joint Learning[25] 35.8 - -
Gated Siamese[3] 37.8 66.9 77.4

Siamese LSTM[24] 42.4 68.7 79.4
Ensembles[20] 45.9 77.5 88.9
MCP-CNN[7] 47.8 74.7 84.8

SCSP[23] 53.5 82.6 91.5
NullRe-id[19] 51.2 82.1 90.5

Improved Embedding[4] 50.4 77.6 85.8
LSSCDL[22] 42.7 84.3 91.9

Proposed 47.3 76.6 88.1

tive samples. Table 4 compares performance between the pro-
posed method and other ones. Experimental results show that
the proposed method as a CNN-based work performs worse
than traditional ones such as Least Square Semi-Coupled Dic-
tionary Learning (LSSCDL) [22] and Spatially Constrained
Similarity function on Polynomial feature map (SCSP) [23].
This is because deep learning-based methods are not effective
in the dataset of small size.

4. CONCLUSIONS

In this paper, we have proposed deep feature embedding
learning for person re-id based on lifted structured loss. The
proposed person re-id is based on CNN, which combines
lifted structured loss and identification loss into the loss func-
tion. Our lifted structured loss minimizes the influence of
sample distribution on training. In testing stage, we perform
feature embeddings on all test images using CNN. Then, we
normalize each embedding into a unit vector and compute L2

distance between all pairs from two camera views, resulting
in efficient computation. Experimental results demonstrate
that the proposed method achieves better performance than
the state-of-art ones on CUHK01 and CUHK03 while per-
forming a little worse than LSSCDL, SCSP and NullRe-id on
VIPeR, i.e. a very small dataset.
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