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ABSTRACT

Object detection is a fundamental process in traffic manage-
ment systems and self-driving cars. Deformable part model
(DPM) is a popular and competitive detector for its high
precision. This paper presents a programmable, low power
hardware implementation of DPM based object detection
for real-time applications. Our approach employs a very
fast object detection pipeline with complementary techniques
such as fast feature pyramid, Fast Fourier Transform (FFT)
and early classification to accelerate DPM with a reason-
able accuracy loss and achieves a speed-up of 50x and 6x
over original DPM and cascade DPM respectively on single
core CPU. The hardware circuit uses 65nm CMOS technol-
ogy and consumes only 36.5mW (0.81 nJ/pixel) based on
the post-layout simulation. The ASIC has an area of 3362
kgates and 295.5 KB on-chip memory and the design utilizes
two simultaneous engines to process two independent object
categories with 8 deformable parts per category.

Index Terms— Object Detection, DPM, FFT, HOG, Au-
tonomous Driving

1. INTRODUCTION

The main challenges of autonomous cars relate to two dy-
namic problems. First, a detailed investigation of the roads
and terrains it is passing by to acquire knowledge about the
dynamic environment (free-way, neighborhood). Second, an
accurate detection and tracking of differentiable objectssuch
as pedestrians, road-side light-post, traffic signals, etc. In
addition to that, self-driving cars should be capable enough
to derive most accurate inference about its driving context
(perception capability to judge the immediate intention of
other drivers or a pedestrian waiting at an intersection to
cross-walk). Autonomous vehicles include grand challenges
to understand physical world [1, 2] and achieve transporta-
tion capabilities of a classic car. Current autonomous driving
techniques depends mainly on computer vision besides GPS,
RADAR and LIDAR. Object detection and accurate vehi-
cle detection are essential problems for practical intelligent

applications, such as autonomous vehicles, smart traffic and
driver assistance.

The deformable part model (DPM) [3] is very popular
and challenging object detector for being a mature and sta-
ble technique. DPM learns a multi-component mixture model
based on Histogram of Oriented Gradients (HOG) [4] and has
a merit of large appearance variations handling for challeng-
ing benchmarks. However, original DPM takes more than 10
seconds (single thread) per image on Pascal VOC [5].

Multiple accelerated techniques are proposed to speed
up DPM while keeping close to its high detection rates such
as CascadeDPM [6], CoarseDPM [7], FFT-DPM [8], Rapid-
DPM [9], FastDPM [10] and R-DPM [11].

We propose a low power hardware implementation of
DPM object detection pipeline based on three complemen-
tary components to speedup DPM. We provide an extensive
performance evaluation in terms of time and accuracy on
detection benchmarks.

The remainder of the paper is organized as follows: Sec-
tion 2 surveys briefly the related work with focus on DPM.
Section 3 presents details of our proposed framework. Sec-
tion 4 shows experimental results and performance evaluation
on benchmark datasets. Finally section 5 concludes the paper.

2. RELATED WORK

DPMs [3] have the potential to have more competitive run-
times to squeeze the involved extensive computations and bot-
tlenecks. Recent research work and multiple approaches have
been introduced to speed up DPMs technique. Felzenszwalb
et al. proposed CascadeDPM [6], which eliminates unpromis-
ing hypotheses efficiently and achieves about14× processing
time speed-up on PASCAL 2007 dataset [5] with a reasonable
precision loss in comparison to original DPM [3]. Pedersoliet
al. proposed a hierarchical part based model with coarse-to-
fine procedure, CoarseDPM [7], to prune hypotheses at low
cost. Iasonas uses Dual-Tree Branch-and-Bound (DTBB) [9]
to calculate the cost function’s upper bounds of part-based
DPM model and result in efficient acceleration with almost
similar detections.
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Recently, Yan et al. proposed FastDPM [10] to im-
prove time performance through alternative strategies of
Star-Cascade technique [6] based on a lookup table His-
togram of Oriented Gradients (HOG) [4] and neighborhood
aware cascade. Fast DP-DPM uses deep learning to improve
the performance of DPM [12]. However, it is still slow for
real-time applications.

In terms of hardware architecture, Kenta et al. presented a
simplified HOG strategy oriented for a real-time multi-object
detection VLSI processor [13], a dual core architecture is de-
signed to process HDTV video at30 HZ and fabricated65 nm
chip as a scalable architecture under low power conditions
[14]. Amr et al. presented an energy efficient multi-scale
HOG architecture [15] on a45 nm chip to process 1080HD
video at60 HZ consuming45.3 mW and a programmable en-
ergy efficient DPM hardware architecture [16] using65 nm
chip to process HDTV video at30 HZ and consuming58.6
mW. These architectures could be utilized in fault prediction
and self-healing hardware systems [17].

3. PROPOSED OBJECT DETECTION SYSTEM

Our work is complementary to recent approaches for faster
DPMs as we focus on a combination to improve the speed
of pyramid construction and classification step, we couple
fast feature pyramid technique [18] and LUT HOG features
[4, 10] with an optimized FFT classification scheme and then
we provide SIMD optimized and multi-threaded version for
better speedup results while maintaining accuracy [19].

3.1. Proposed Hardware Architecture

The overall architecture of the proposed DPM hardware
detector is composed of the following units: fast feature pyra-
mid generation, Fast Fourier Transform (FFT) unit, SVM
classification and SVM early detection and rejection unit.
The required units will provide on-the-fly data processing,
therefore all calculations are executed as soon as needed
data becomes available, which reduces the on-chip memory
needed. The proposed detector architecture is a standalone
hardware to accelerate detection process, it reads an input
image and generates the automatic detection locations. We
provide and optimized implementation in order to ignore the
need of external storage and reduce the power consumption
of whole system.

3.2. Fast Feature Pyramid

We can represent any featureα as a weighted sum of the chan-
nel as:

αΩ(I) =
∑

ijk

ωijkC(i, j, k) (1)

where I is any image,C = Ω(I) andΩ(I) is a low-level shift
variant function applying on the image to create the channel

Input image

HOG features extraction 

with variable cell size

Fig. 1. Generating feature pyramid.

C. Also we can rewriteαΩ(Is) as follows for simplicity:

αΩ(Is) ≡
1

hsωsk

∑

ijk

ωijkCs(i, j, k) (2)

where(hs × ωs) is dimensionality of the imageIs sampled
at any scales andk is the layer [18]. Now, if we decom-
pose our initial imageI into M smaller images such that
I = [I1, I2, ..., IM ]. We can rewrite Eq. 2 as follows:

αΩ(I) ≈

∑
αΩ(I

m)

M
(3)

If we can expressαΩ(I) ≈ E[αΩ(I
m)] by considering

[I1, I2, ..., IM ] as a small image ensemble, whereE[·] de-
notes the expectation over that ensemble of the image I. Then
according to Ruderman and Bialeks finding with more details
in [18] about functional representation of the statistics of any
natural image I, in terms of the sampling scale s at which im-
age ensemble was captured, we can substitute the power law
by:

αΩ(Is1)/αΩ(Is2) = (s1/s2)
λΩ + η (4)

where the variableη denotes a measure of deviation from Eq.
4 for any given image. The above computation is significant
subject to its dependency on the ratio of the scales at which
image ensembles were captured (i.e.s1/s2) instead of the
corresponding individual ones.

3.3. Pyramid Generation

The HOG-based detection is simple to understand, it’s a
”‘global”’ feature to describe an object rather than a collec-
tion of local features [4] where the entire object is represented
as a feature vector. To compute HOG feature descriptors, an
input image is divided into non-overlapping8× 8 pixels size
cells to be processed within detection windows. The cells
are arranged into overlapping blocks. Orientations histogram
is computed for each cell and then normalized with respect
to neighbors [4]. A scale generator is utilized to create the
image pyramid with multiple scales as shown in Fig. 1.

3.4. Multi-scale Generator Architecture

A block diagram of the scale generator module in Fig. 2. In
order to generate multiple scales, input pixels are streamed
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into module from the frame buffer. We use low pass filters
to process input pixels before down-sampling at different lev-
els in order to prevent aliasing and then create two separate
octaves. All generated images are stored into line buffers par-
tially, we generate mainly the exact scales which are used in
further steps to extract HOG features for those scales. Our
line buffers will store30 columns of pixels of each rescaled
image, which is sufficient to generate the different scales.
These line buffers are shared across the multiple scales cre-
ated within same octave [15].

3.5. Fast Fourier Transform (FFT)

FFT is used to efficiently compute the discrete Fourier trans-
form (DFT) and it is one of the most important techniques
in signal processing. Individual part detectors of part based
models are responsible for extracting low-level features from
every scale of an image pyramid. The score of a filter evalu-
ated on an image can be computed as:

spq =

F−1∑

f=0

M−1∑

m=0

N−1∑

n=0

afp+m,q+nb
f
mn (5)

Now, we can compute the responses of a filter considering

all possible locations as:S =
∑F−1

f=0 afb
f

whereb is the
reversed filter. With the above image and filter size, the cost
of standard convolution, of complexityO(LWMN), will be
replaced withO(LWlogLW ) when applying FFT.

We use the Fourier transform to speed-up the different
evaluations required of a linear classifier in a multi-scalede-
tection framework. The standard process without FFT is to
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Fig. 4. 4-parallel radix-22 feedforward architecture for the
computation of the 16-point FFT.

R2

R2

R2

R2

R2

R2

STAGE 1 STAGE 2 STAGE 3 STAGE 4

× 

b3b2b1b0

b
5 b

4

b
4 b

5

8

8

8

8
× 

× 

× 

b
3 b

4

b
2 b

3

4

4

4

4

× 

R2

R2 R2

R2 R2

R2

STAGE 5 STAGE 6

b
1 b

2

2

2

2

2
× 

× 

× 

b
0 b

1

1

1

1

1

× 

b3b2b1b0 b5b2b1b0 b5b4b1b0 b5b4b3b0 b5b4b3b2

Fig. 5. 4-parallel radix-22 feedforward 64-point DIT FFT ar-
chitecture.

convolve all HOG features and HOG filters and then to sum
all the resulting per-feature scores. Leveraging FFT in our
pipeline is inspired from [8], convolutions are done by com-
puting FTs of features pyramid, multiplying them in Fourier
domain, and then we compute inverse FT of the result. The
convolution process is accelerated by an order of magnitude
at least. If we need to convolve L HOG filters and sum them
across K HOG features, then the total cost per image is

Cfourier/img = KCFFT
︸ ︷︷ ︸

forward FFTs

+ LCFFT
︸ ︷︷ ︸

inverse FFTs

+ KLCmul
︸ ︷︷ ︸

multiplications

(6)

3.5.1. Radix-22 FFT Architecture

DFT of an input sequence for N point is given by:

X[k] =

N−1∑

n=0

x[n]Wnk
N , k = 0, 1, ...., N − 1 (7)

whereWnk
N is given byWnk

N = e−j(2π/N)nk

The FFT is based on the Cooley Tukey algorithm which
is widely used in efficient DFT computations whenN is a
power of two [20]. The complexity of Cooley-Tukey algo-
rithm is O(N log2 N) [21]. Butterflies and rotations are com-
puted within each stage of the graphs, where the lower edges
of the butterflies are always multiplied by -1 for graph simpli-
fication.

The flow graph of a radix-22 DIF FFT can be acquired
from the graph of a radix-2 DIF.Therefore, each stage is bro-
ken down: at odd stages, the breaking is done into trivial and
non trivial rotation,φ̄ andφ̄ = φ modN/4 and movingφ̄ to
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the next stage. Fig. 4 shows a 16-point 4-parallel radix-22

butterflies based feedforward FFT architecture.

3.6. Early SVM Classification

After offline training of a linear SVM classifier for the re-
quired DPM model in root and parts filters, the model coef-
ficients are loaded to an on-chip buffers. Our detector can
be configured for different object categories. For example,in
case of INRIA Person benchmark, the4, 608 SVM weights
which represents128 × 64 pixels for a pedestrian root filter
are quantized into 4-bit fixed-point and a memory size equals
to 0.018 Mbit [15]. The SVM classification processing is per-
formed using a number of MACs where each MAC has an
adder and two multipliers used to calculate the partial dot
product for values of the extracted features per window and
SVM coefficients plus an extra adder to accumulate the par-
tial dot products. The classification block diagram is shown
in Fig. 6.

The technique for early classification is inspired from a
simplified HOG algorithm proposed in [14]. In our work, we
use a similar technique to early detect and reject the DPM
part candidates in each component (we use 8 parts per com-
ponent), instead of waiting to calculate all parts score, we
compare partial parts score obtained subsequently with early
classification threshold and then posterior computations can
be skipped.

Table 1. Comparison with ODROID-XU3 board processing
Full HD 1920× 1080 frames

Platform Cortex-A7 [16] Cortex-A15 [16] DPM [16] Our Work
1 core 4 cores 1 core 4 cores 0.77V 1.11 V 0.77V 1.11 V

Process Technology 28nm HKMG 28nm HKMG 65nm CMOS 65nm CMOS
Throughput

(
fps

)
0.04 0.10 0.11 0.24 30 60 42 74

Power
(
mW

)
155.6 383.5 1,703.8 3,575.6 58.6 216.5 36.5 182.4

Energy
(
nJ/pixel

)
1,881.8 1,849.0 7,301.2 7,165.7 0.94 1.74 0.81 1.48

4. EXPERIMENTAL RESULTS

Table 2 shows a comparison between our hardware archi-
tecture versus other previous hardware object detector based

Table 2. Performance comparison on PASCAL VOC 2007
dataset for multiple hardware implementations.

HOG [14] DPM [16] Our Work
Process 65nm 65nm 65nm
Chip size 4.2× 2.1mm2 4.0×4.0mm2 4.2×4.0mm2

Input resolution 1920× 1080 1920× 1080 1920× 1080
Multi-scale one scale 12 scales 12 scales
Deformable parts No 8 8
Object classes 2 2 2
Frame rate 30 30 42
Frequency 84.3 MHz 62.5 MHz 62.5 MHz
Power 84 mW 58.6 mW 36.5 mW
Energy/pixel 1.35 nJ 0.94 nJ 0.81 nJ
Mean AP 18.5% 26% 31.4%

on HOG. Both circuits in [14] and [16] can process full HD
frames at30 fps with lower accuracy than the original DPM
algorithm. Our proposed hardware circuit can provide fast
multi-scale feature map generation and the whole detection
process to run on-chip with utilizing deformable parts in de-
tection, which provide higher the detection rates and robust
detection. In the meanwhile, it consumes 34% less energy in
comparison to previous architecture [14].

A comparison between the proposed hardware circuit and
a software implementation of DPM algorithm running on
ODROID-XU3 board [16] is shown in Table 1. The required
pre-processing steps and post processing step of non-maximal
suppression for the DPM based detection hardware architec-
ture have a small power consumption and area overhead in
comparison to the main intensive computations steps.

The proposed ASIC architecture has less energy con-
sumption than the Samsung embedded processor in about 3
orders of magnitude. These results show performance evalu-
ation on HD frames and it shows that a maximum throughput
of 0.24 frames per seconds can be achieved on ODROID-
XU3 board with the Samsung processor when using the 4
cores of Cortex-A16.

5. CONCLUSION

In this paper, a novel pipeline is proposed to accelerate de-
formable part models and achieve a real-time object detec-
tion, while keeping the similar high detection rates of DPM.
We present a low power and real-time hardware implemen-
tation for a DPM based object detector. Our circuit uses a
65 nm CMOS technology and processes1920× 1080 videos
at 36 fps while consuming only36.5 mW and resulting in
an energy efficiency of0.81 nJ/pixel. Experimental results
on different benchmarks show that our work is generic and
effective in the context of vehicle detection and other object
categories.This work presents DPM to real-time applications
such as driver assistance and autonomous vehicles and pro-
vides object detection to be low power and energy efficient as
video compression.
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