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ABSTRACT
Multi-image alignment, bringing a group of images into common
register, is an ubiquitous problem and the first step of many applica-
tions in a wide variety of domains. As a result, a great amount of ef-
fort is being invested in developing efficient multi-image alignment
algorithms. Little has been done, however, to answer fundamental
practical questions such as: what is the comparative performance of
existing methods? is there still room for improvement? under which
conditions should one technique be preferred over another? does
adding more images or prior image information improve the regis-
tration results? In this work, we present a thorough analysis and
evaluation of the main multi-image alignment methods which, com-
bined with theoretical limits in multi-image alignment performance,
allows us to organize them under a common framework and provide
practical answers to these essential questions.

Index Terms— Multi-image alignment, Bayesian estimators

1. INTRODUCTION

Multi-image alignment consists in bringing a group of images into
a common reference. It is an ubiquitous problem, being the first
step of many applications, such as high dynamic range (HDR) imag-
ing [1, 2], super-resolution [3, 4, 5], burst deblurring [6, 7] and burst
denoising [8]. It appears in a wide variety of domains such as com-
putational photography, biomedical imaging, astronomy, and many
other remote sensing applications, where alignment errors highly af-
fect the final result. For instance, in computational photography ap-
plications such as HDR imaging, ghosting artifacts that appear from
incorrect alignment are extremely perturbing to the observer, often
voiding completely the utility of the main technique. In biomedical
imaging, alignment quality often limits the resolution of structures
reconstruction, detection, or segmentation [9, 10, 11, 12].

Several techniques have been proposed to tackle the multi-image
alignment problem and a great amount of effort is being invested
in improving results even further. Still, other fundamental practical
aspects of the multi-image registration problem have received much
less attention. For instance, what is the comparative performance
of the existing methods? how much improvement can we expect if
we add more images or incorporate image priors? In this work, we
present a comprehensive study of the main multi-image alignment
methods that allows us to organize them under a common framework
and provide answers to these essential questions. We focus on 2D
rigid translations, which, despite being simple, are the basis of many
models used in practice. For instance, in very complex scenes where
objects move independently, we often make the sound hypothesis
that the background suffers a 2D global translation, and even non-
rigid transformations can be locally approximated by translations.

Multi-image shift estimation is interlaced with the estimation of
the underlying image. In fact, a straightforward and the most popu-
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lar approach for recovering the latent image, is by first estimating the
multiple shifts and then averaging the unshifted noisy observations.
There are other approaches that circumvent the shift estimation step
and directly rely on shift-invariant features for estimating the latent
image [13]. In this work, we focus on the problem of multiple shift
estimation solely, even if as a side product we get an estimation of
the underlying image. Indeed, there are many applications that es-
timating the shifts is an end in itself, since, for example, one could
opt to combine the images later on in the image processing pipeline.

The simplest approach to multi-image shift estimation, is to do
pairwise alignment between each image in the set and one chosen
as reference. However, given that all the input images share the
same underlying scene, they are not independent and doing a joint
alignment, mostly under low signal-to-noise ratio (SNR) conditions
where the pairwise alignment is very noisy, may improve the re-
sults. The main approaches to multi-image alignment include: the
maximum likelihood estimator (MLE) with different optimization
strategies [4, 14], the Bayesian MLE [15], the maximum a posteriori
(MAP) estimator with different optimization strategies [4, 15, 16],
and constrained alignment [17, 18].

Most of these algorithms were originally introduced for the
super-resolution problem. For the multi-image alignment setting,
we show that most of these approaches are mathematically equiv-
alent in the sense that they optimize a very similar functional, the
main difference being whether they include a prior image model or
not, and which is the chosen optimization technique.

In [19], we presented a theoretical analysis of the fundamen-
tal limits in multi-image alignment and analyzed the performance
of the MLE with respect to these bounds. Although, MLE achieves
maximum performance in high SNR, there is a gap between the-
ory and practice in medium to low SNR conditions. In this work,
we conducted a thorough experimental analysis that help us close
this performance gap on a wide range of SNR conditions. We show
that more images and an image prior are extremely useful in low
SNR, enabling alignment in very challenging conditions where it
is otherwise not possible. Indeed, the compared methods that rely
on prior image information perform very close to the theoretical
bounds, showing that there is little room left for improvement.

This article is organized as follows. Section 2 details the ana-
lyzed methods, while Section 3 presents an empirical evaluation on
real and synthetic data. Section 4 summarizes the conclusions.

2. MULTI-IMAGE ALIGNMENT METHODS

Let us consider the image acquisition model

zi(x) = u(x− τττ i) + ni(x), i = 0, . . . ,K, (1)
where zi(x) is the observed i-th image at pixel position x = [x, y]T ,
u is the underlying continuous image, τττ i = [τix , τiy ]T is the 2D
translation vector of frame i with respect to u (τττ0 = 0), and ni(x)
is independent additive Gaussian noise with variance σ2. In prac-
tice, we have access to the digital images z0, . . . , zK sampled on a
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discrete grid. We will assume that all the images are band-limited
and sampled according to the Nyquist sampling theorem. Let τττ =
[τττT1 , . . . , τττ

T
K ]T be the concatenation of all 2D unknown translations,

and z =[zT0 , . . . , z
T
K ]T be the concatenation of the (K+1) observed

images. The goal of multi-image alignment techniques is then to es-
timate τττ from z. Equivalently in the Fourier domain, the model be-
comes: z̃i(ωωω) = ũ(ωωω)e−iωωω·τττi + ñi(ωωω), where ~ denotes 2D image
Fourier transforms, ωωω = [ωx, ωy]T represents the 2D Fourier spatial
frequency and · denotes the inner product operation.

The main methods for 2D multi-image translation estimation can
be classified into two categories, depending on whether they include
prior image information or not. Among methods that do not include
an image prior we find: the MLE, with different optimization strate-
gies [4], and constrained alignment methods [17, 18]. Among those
including an image prior, we find the MAP estimator, with different
optimization strategies [4, 15, 16], and the Bayesian MLE [15].
Maximum Likelihood Estimator: Given (K+ 1) independent im-
ages following Model (1), and assuming u is an unknown determin-
istic image, the MLE of [u,τττ ]T is the value that maximizes the log-
likelihood of the samples,

[u,τττ ]MLE = arg max
u,τττ

[log p(z|u,τττ)] = arg min
u,τττ

||z−B(τττ)u||2,

(2)
with the shift operator B(τττ) = [B(τττ1)T , . . . , B(τττK)T ]T , where
B(τττ i) is the Shannon 2D interpolation operator [15] that verifies:
B(τττ i)u(x) = u(x − τττ i). The functional in (2) is an example of
a separable non-linear least-square problem. Given the shifts τττ , the
unknown underlying image u is given by the least squares solution
û = (K + 1)−1BT z, which is the average of the aligned frames.
Inserting û back into (2), the functional depends on the shifts only

τττMLE = arg min
τττ

||z− (K + 1)−1BBT z||2. (3)

Functional (3) is non-convex and different approaches can be fol-
lowed to find a local minimum [4]. We consider here two ap-
proaches: cyclic coordinate descent and variable projections. Cyclic
coordinate descent consists in optimizing (3) on one coordinate at
a time. Two main steps are iterated: first, compute the average of
the frames aligned with the current estimate of the shifts (given by
û); second, find each shift by minimizing the Euclidean distance of
the corresponding image against the average. Variable projections
makes use of the fact that minimizing (3) is equivalent to

τττMLEvp = arg max
τττ

zTBBT z. (4)

Robinson et al. [4] proposed to compute the MLE maximizing (4),
a method they named variable projections. For the super-resolution
problem, they claim that this optimization has several advantages
compared to the cyclic coordinate descent approach since it con-
verges in fewer iterations and its minima are better defined.
Bayesian Maximum Likelihood Estimator: Let us assume that the
underlying image u can be modeled as a stationary zero-mean Gaus-
sian process with spectral density Su = FTΣΣΣuF , where ΣΣΣu is the
covariance matrix and F the Fourier operator. Under this hypothesis,
u can be considered a hidden variable and be marginalized from the
samples log-likelihood. The unknown shifts can then be computed
maximizing the marginal likelihood p(z|τττ) =

∫
p(z|u,τττ)p(u)du,

which is also a Gaussian function (see e.g., [20, Eq. (2.115)]), hav-
ing zero mean and covariance matrix ΓΓΓ = σ2I + BΣΣΣuB

T . Then,

τττ BMLE = arg max
τττ

z̃T B̃W̃B̃T z̃, (5)

where B̃ = FBFT is the Fourier equivalent of the shift operator,
W̃ = (Su(K + 1) + Iσ2)−1Su is the Wiener filter, and I is the
identity matrix. Notice that the only difference between the Bayesian
maximum likelihood estimator (BMLE) (5) and the MLE (4) is the
Wiener filter, which appears with the introduction of the image prior.
Maximum a Posteriori: An alternative way to incorporate an image
prior is to compute the MAP estimator. Given (K + 1) independent
samples following Model (1), and assuming u is drawn from a zero-
mean Gaussian process with spectral density Su, the MAP of [u,τττ ]T

is the value that maximizes the posterior probability

[u,τττ ]MAP = arg max
u,τττ

[log p(z|u,τττ) + log p(u)]

= arg min
u,τττ

1
2σ2 ||z−BTu||2 + 1

2
uTΣΣΣ−1

u u.
(6)

Similarly to functional (2), functional (6) is an example of a separa-
ble non-linear least-square problem. Following the same steps as for
the MLE, it can be shown that minimizing (6) is equivalent to [4]

τττMAP = arg max
τττ

z̃T B̃W̃B̃T z̃, (7)

where W̃ is the Wiener filter as defined before. Hence, the MAP
and the BMLE optimize the same cost function.
Common Framework. While often presented as different tech-
niques, we have just showed that the previously presented multi-
image alignment approaches, all optimize the cost function1 E(τττ) =

z̃T B̃W̃B̃T z̃, whether with W̃ = I for the methods without image
prior or W̃ equal to the Wiener filter for methods including an image
prior. Nevertheless, given that this functional is non convex, results
may vary depending on the optimization strategy and the initializa-
tion procedure.
Constrained Alignment. Another way of aligning multiple images
is to use all possible pairwise estimations and use their redundancy
to get more accurate and self-consistent shifts [17]. For this pur-
pose, all the pairwise shifts bij between any two frames i < j are
first computed by locating the maximum value of their correlation
map. Then, these estimates are combined making use of the fact
that bij is the summation of the shift vectors of all intermediate ad-
jacent frames, ri + ri+1 + · · · + rj−1 = bij . The shifts ri can
then be found solving the over-determined set of linear equations
(K(K+ 1)/2 equations and K unknowns) obtained by determining
all possible shifts between any two frames. A similar approach was
proposed by Farsiu et al. [18], where they incorporate the coherence
as a constraint in the optimization of the shifts directly.
Theoretical Performance Limits. In [19] we presented a theoretical
study deriving different statistical performance bounds for the trans-
lations estimation accuracy in multi-image alignment. The Cramér-
Rao bound, under the assumption that the underlying image follows
a natural image prior (CRB) was derived. The CRB gives a lower
bound on the mean square error (MSE) of any unbiased estimator of
the shifts τττ (see [19, Eq. (44)]). Different behaviors for the align-
ment accuracy are identified, depending on the SNR of the input
images. For very high SNR, the performance bound is independent
of the number of images K or prior information (image or shifts
prior), and the MLE attains the bound. Doing pairwise alignment
using the MLE is optimal in this case. For high to moderate SNR,
increasing the number of images does improve performance. Inter-
estingly, theory predicts the existence of an SNR threshold below
which performance degrades briskly and a lower limit SNR value

1This equivalence is not necessarily valid when addressing the super-
resolution problem (including blurring and subsampling operatiors).
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Fig. 1. (a) Natural images used as ground-truth (images from [19]).
Comparison of optimization and initialization strategies of MLE (b)
and MAP (c) with K = 5 images. (d) Performance comparison of
MLE, MAP and the constrained alignment applied to Wiener filtered
images. The CRB is displayed as a performance benchmark [19].

below which alignment is not possible. Nevertheless, increasing the
number of images can push back these thresholds several dBs, mak-
ing alignment possible in much more challenging conditions. For
natural images, the MLE performance is close to the CRB but it
is not tight. A possible reason for this is the non-optimality of the
MLE, for which a critical drawback is that it does not use image prior
information. Moreover, for this SNR region, the MLE performance
clearly improves with increasing number of images. Including prior
image information, for example through a Bayesian approach such
as minimizing the expected MSE or computing the Maximum a Pos-
teriori, could help close the gap between the fundamental limits and
the MLE performance.

3. EXPERIMENTAL ANALYSIS

In what follows, we conduct a thorough experimental analysis to
evaluate the presented techniques with both synthetic and real data.

3.1. Synthetic Data

Experimental setup: Sets of images are generated following
Model (1), taking as ground-truth the examples in Fig. 1 (a) (50×50
pixels), with different noise levels and number of shifted images.
Two types of motion are considered: uniformly distributed inde-
pendent shifts and drift-driven trajectories (each image is shifted
from the previous image position, according to prior angle and
speed distributions), often observed in biomedical applications (e.g.,
cryo-electron microscopy) and image bursts capture with hand-held
cameras, among others. The image prior for the MAP estimator
is a stationary zero-mean Gaussian process with a spectral density
that decays as the inverse of the squared Fourier frequency, a prior
widely used for locally modeling natural images [19, 21, 22, 23, 24].
The experiments are repeated 100 times for each SNR level and the
mean and 95% confidence intervals of the MSE are reported. The
methods are almost unbiased (the squared bias was on average, in all
experiments, three orders of magnitude smaller than the variance).
The SNR is defined as the ratio between the total energy of the
derivative of the ground-truth image and the noise power [19].
Optimization and initialization: The MLE and MAP were solved
using both cyclic coordinate descent and variable projections. All
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Fig. 2. (a) MLE versus MAP performance as a function of the input
image SNR when using K = 5 and K = 10 images, and the re-
spective CRB bounds. (b) Ratio of the performance of the different
configurations shown in (a).

optimizations were initialized using random shifts as well as pair-
wise alignment (each image is aligned to the first image using clas-
sical correlation). Fig. 1 shows the results for the MLE (b) and MAP
(c) withK = 5 images with a random shifts trajectory. For the MLE,
in high SNR conditions, there are no significant performance differ-
ences between the optimizations nor the initialization strategies. For
lower SNR levels, however, the cyclic coordinate descent optimiza-
tion seems to be slightly better than variable projections, and the
pairwise alignment initialization considerably outperforms the ran-
dom initialization. For the MAP approach, no significant differences
are found between the tested configurations at all SNR levels.
Image prior: Fig. 1 (d) compares the performance of the cyclic
coordinate descent MLE and MAP, both initialized using pair-
wise alignment, and the constrained alignment estimator applied to
Wiener prefiltered images (assuming the same image prior as for
MAP). The results are compared to the Cramér-Rao lower bound
(CRB) [19, Eq. (44)], which gives a lower bound on the variance
of any unbiased estimator of the shifts, therefore establishing a per-
formance benchmark. The CRB is computed assuming the same
image prior as for the MAP estimator (see [19] for details). For very
high SNR, all methods perform very similarly and close to the CRB,
meaning that the extra information provided by the image prior is
not useful. For low to moderate SNR levels, however, a clear per-
formance improvement is observed with the MAP estimator which
reduces the gap between the MLE and the limit predicted by the
CRB. Even more importantly, including the image prior pushes back
several dBs the SNR threshold after which alignment performance
degrades dramatically (about -10dB for MLE to -14dB for MAP, see
Fig. 1 (d)). Hence, including the image prior enables alignment in
very challenging noise conditions where it is otherwise not possible.
Number of images: Fig. 2 shows a comparison of MLE and MAP
with different number of images (K = 5, 10). Similarly to what
was observed for the image prior, increasing the number of images
has no effect in high SNR conditions. For lower SNR, increasing the
number of images improves the results, both for MLE and MAP. It
is interesting to remark, however, that the performance gain given by
including the image prior is much larger than that of increasing the
number of images. Indeed, the MAP estimator with 5 images per-
forms considerably better than the MLE with 10 images. Fig. 2 (b)
shows the ratio between the performance of the different configura-
tions. Increasing the number of images produces a higher improve-
ment for MLE (blue curve) than for MAP (red curve). But more
importantly, the improvement is much larger when including the im-
age prior (MLE/MAP ratio shown in the yellow and violet curves),
showing a larger gain for smaller K. This is particularly interesting
from a practical perspective given the increased complexity, and thus
time requirements, of increasing the number of images as opposed
to the almost costless inclusion of the appropriate image prior.
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Fig. 3. Top: Comparison of the alignment with and without prior
when doing the shift estimation using a patch size 128 × 128 and
K = 5 images. Bottom: Alignment with increasing patch size (left
to right) without (top) and with (bottom) image prior.

The previous results correspond to bolivia image (Fig. 1 (a) top
left) with independent random shifts, but the same behavior is ob-
served for the other examples and for drift-driven trajectories as well.

3.2. Real Data

To evaluate the applicability of the previous results to real data, we
compare the alignment performance for the burst denoising task [8].
For burst denoising (a widely used and very powerful technique for
noise reduction in low light conditions) correct alignment is essential
to obtain good ghosting-free results.
Experimental setup: Image bursts are acquired in low light con-
ditions with a hand-held Sony α-5100 camera set to ISO 20000.
Burst denoising is performed by aligning and averaging groups
of K = 2, 5, 10, raw images. Images are aligned using the
MLE and MAP solved by cyclic coordinate descent, considering
the same image prior as before. To have different SNR levels,
alignment is performed using a sub-image (patch) of varying size:
64 × 64, . . . , 1024 × 1024. The gradient content increases with
the patch size, thus reproducing conditions of increasing SNR.
The shifts are estimated using the red channel, then applied to all
channels before demosaicking.
Effects of the image prior: Fig. 3 (top) shows an example of the
results obtained with 5 images, where alignment is performed using
a sub-region of 128× 128 pixels. In this case, alignment is not pos-
sible without the image prior but it becomes feasible including it.
Fig. 3 (bottom) shows an extract of the results obtained when using
different patch sizes. The first and second rows show the result with-
out and with image prior, respectively. For the two smallest patch
sizes (64 × 64 and 128 × 128) the noise is very high and there is
almost no gradient in the patch, representing cases of very low SNR.
Even under these very challenging conditions, the image prior en-
ables alignment with the 128×128 patch. This result confirms what
was observed in Section 3.1, which showed that the SNR thresh-
old below which alignment performance degrades dramatically can
be pushed back by including an image prior. For the patch size
256 × 256, the gradient content is already visible and alignment
is possible with or without the image prior. Nevertheless, the qual-
ity difference is still clear. For patch sizes above 512, the difference
is almost indistinguishable. This was also predicted by the results
obtained in Section 3.1, since in high SNR all methods agree and

patch size
200 400 600 800 1000
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1
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K=10

Fig. 4. Left: Extracts of the average of two images aligned using
the shifts obtained with K = 2 (pairwise) and K = 10 images (top
and down respectively). Right: Difference between MAP and MLE
estimations for varying patch size and number of images.

attain the CRB [19]. Fig. 4 (right) shows the absolute value of the
difference between the shift estimates obtained with and without im-
age prior for the different patch sizes and different number of images
(average of the difference in x and y directions). The estimations are
very similar for patch sizes above 512.
Effects of the number of images: Fig. 4 (left) compares the quality
of the estimated shifts with MAP using 2 (pairwise alignment) versus
10 images for a patch size of 128×128. For this purpose we show the
average of two images aligned using the shifts obtained with K =
2 (left) and using K = 10 (right). The result of the multi-image
alignment is sharper than the pairwise alignment, showing the clear
performance improvement obtained by using more images.

4. CONCLUSIONS

We conducted a thorough analysis on multi-image shift estimation
methods. We showed that most of them use different optimization
techniques to optimize the same functional, the main difference be-
ing the inclusion of prior image information. We then conducted
an experimental analysis, that confirmed the per-region behavior de-
pending on the SNR conditions predicted by a theoretical analysis on
the fundamental limits of multi-image alignment performance [19].
In very high SNR, all the evaluated methods perform very simi-
larly and very close to the Cramér-Rao lower bound. Hence, the
simplest methods already achieve the best possible performance in
this SNR condition and including prior image information or more
images does not improve the alignment result. For moderate to
low SNR, however, we show that there is a clear performance gain
when including an image prior or using more images. This gain is
twofold: the MSE is reduced and, more importantly, the threshold
at which performance degrades dramatically is pushed back several
dBs. Therefore, for these SNR conditions, including more images
or an image prior makes alignment possible in conditions where it
is otherwise not possible. The performance gain obtained by includ-
ing the image prior is larger than that of increasing the number of
images. This is important from a practical perspective given the in-
creased complexity, and therefore time requirements, of increasing
the number of images as opposed to the almost costless inclusion of
the image prior. Indeed, we found that the methods that include the
image prior perform very close to the CRB for a larger SNR range,
showing that there is little room left for improvement as they close
the gap between the MLE and the CRB [19] in moderate to low SNR.
Regarding optimization and initialization, slight differences are ob-
served for the MLE in low SNR conditions, but this does not seem
to be a critical aspect. Finally, as predicted by theory [19], we ob-
serve the existence of an SNR threshold below which none of the
evaluated methods manages to align the images, and neither more
images nor an image prior can revert this situation. The only way
out is increasing the SNR, e.g., increasing the image size (or patch
size in case of local alignment).
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