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ABSTRACT 

 
We present a novel egocentric visual localization algorithm for an 

indoor navigation system, called PERCEPT-V, which is designed to 

assist the blind and visually impaired users traveling independently 

in an unfamiliar indoor space. Through the integration of a 

background extraction module based on Robust Principle 

Component Analysis (RPCA) into the localization algorithm, we 

successfully improve the resilience of camera localization to the 

presence of crowds in the observed scene. Experiments using 

datasets of videos containing various levels of crowd activity show 

that the proposed algorithm can increase prominently the reliability 

of localization performance. 

Index Terms— Robust Principal Component Analysis; 

Background Extraction; Visual Localization; PERCEPT; Assistive 

Technology 

 

1. INTRODUCTION 

 
According to visual impairment and blindness statistics from the 

World Health Organization (WHO), there are 285 million people 

suffering from visual impairment worldwide [1]. Indoor wayfinding 

in complex public spaces poses a major challenge to blind and 

visually impaired (BVI) individuals and negatively affects their 

mobility and the quality of life. To increase the BVI individuals’ 

ability of travelling independently, we developed the PERCEPT 

indoor navigation system [2,3] using Near-Field Communication 

(NFC) tags; it was proved to be beneficial to the BVI users. From 

the experiments conducted with BVI subjects, PERCEPT has shown 

significant effectiveness on indoor wayfinding by delivering step-

by-step audible navigation instructions to users. Although the 

PERCEPT system provides reliable localization and orientation to 

users by scanning the tags, the deployment of NFC tags requires 

changes in the environment, which can be costly. 

To make PERCEPT system scalable and cost-effective, we 

propose to develop an organic computer vision-driven smartphone-

based indoor navigation system, which we name PERCEPT-V. For 

this system, we show that the visual localization algorithm [4] can 

determine the BVI user’s location and orientation in real-time using 

image or video captured by commercial devices, such as 

smartphones or wearable cameras. Moreover, the accuracy of the 

location and orientation estimates is sufficient for BVI users to 

navigate themselves safely in the space. While existing visual 

localization algorithms provide sufficiently accurate estimation of 

location and orientation, we find that there is a new technical 

challenge to PERCEPT-V: we must increase the reliability of the 
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visual localization algorithm when crowds are present in the 

observed environment, and our algorithm must be resilient to 

instability in the framing and view of the images acquired by the 

BVI users.1 

In order to address the two aforementioned issues, we propose to 

integrate a background extraction algorithm into the image 

processing pipeline to improve the resilience of visual localization 

to the presence of crowds in the observed scene. In contrast to most 

existing background subtraction algorithms, which simply identify 

a mask that identifies and extracts the foreground in the image, we 

focus on the use of background subtraction algorithms that create a 

model for all pixels of the background. We refer to such algorithms 

as background extraction algorithms. Removing the foreground 

helps prevent spurious matches between features corresponding to 

crowds (foreground) and the reference navigation space 

(background). 

In this paper, we leverage robust principle component analysis 

(RPCA) [5], an emerging formulation for background extraction that 

leverages a low-rank-plus-sparse matrix model, to represent the 

background in video sequences for the sake of increasing the number 

of correct keypoint descriptor matches between the target image and 

the reference images. In this formulation, the images in a video 

sequence are vectorized and arranged as columns of a matrix, which 

is then modeled as the sum of two separate components: the first 

component is a low-rank matrix, while the second one is a sparse 

matrix. The low-rank matrix corresponds to the background of the 

video which contains useful visual information of navigation space, 

as it models a component that is present consistently through 

different frames and densely present in the image sequence, while 

the sparse component models activity that is localized in each frame 

and it is likely to correspond to the moving crowds in the video. 

While the background of a static camera observing a simple setting 

can be modeled using a rank-one matrix, variations in illumination 

and minor camera movement can be accurately modeled by 

employing background matrices of higher rank; note that even in 

these cases the rank is usually much lower than the dimensions of 

the matrix (which almost always will correspond to the number of 

frames in the video). Furthermore, the low-rank-plus-sparse model 

allows for the estimation of the occluded pixels in each frame by 

exploiting the regularity of the background image via the low-rank 

model applied to the background component matrix. RPCA has 

potential benefits for low-power systems, such as PERCEPT-V, due 

to its compatibility with compressive sensing [6], a signal and image 

acquisition technique that allows for reductions in the 

dimensionality of the acquired data, and which often can be 

leveraged into simplified lower-power and lower-storage imaging 
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systems. Additionally, the proposed crowd-resilient localization 

algorithm can increase the applicability of our indoor visual 

navigation system to more complex and challenging environments, 

e.g., shopping malls or heavily used transportation hubs. 

Our contributions can be summarized as follows. We present a 

novel visual localization algorithm resilient to crowds in the 

observed scene with RPCA background extraction. Our work 

considers novel aspects of visual localization that, to the best of our 

knowledge, have not yet been address in the literature. 

The remainder of the paper is organized as follows. Section 2 

summarizes a background and discusses related work. The 

background extraction via RPCA are presented in Section 3. 

Experimental results are shown in Section 4. Section 5 concludes 

the paper. 

 

2. BACKGROUND AND RELATED WORK 

 

A. Visual Localization in Wayfinding for BVI individuals 

 
A class of visual systems uses a single camera and attempts to 

register the image obtained within a spatial model obtained by 

leveraging a training dataset – e.g., achieved using Structure from 

Motion (SfM) [7] – for localization purposes. Many of these 

algorithms leverage robust feature extraction algorithms that are 

invariant to changes in scale, rotation, scene illumination, etc. The 

goal is that the same visual features can be detected on the reference 

images and the currently observed image so that the camera user can 

be localized with respect to the 3D coordinate system of the 

environment. This process can be completed using two steps: (i) 

obtaining information about the 2D-to-3D correspondences between 

the observed 2D features and registered 3D correspondences via 2D-

to-2D matching; and (ii) determining the camera pose with respect 

to the world coordinate system using the suitable spatial 

transformation calculated with the 2D-to-3D correspondences. The 

most popular features for navigation are known as keypoint 

detectors, where representative examples include speeded-up robust 

features (SURF) [8] and scale-invariant feature transform (SIFT) 

[9]. 

For localization purposes, the keypoint descriptors extracted 

from the acquired image are compared to those obtained from 

reference images and registered in 3D coordinate system to search 

for the best match by measuring the distance. After obtaining the 

2D-to-2D matches, the 2D-to-3D correspondences can be found 

easily. To estimate the pose of the camera when the 2D-to-3D 

correspondences are available, most methods use random sampling 

and consensus (RANSAC) [10] to solve the Prospective-n-Point 

(PnP) problem, which randomly selects the smallest necessary 

subset of the putative 2D-to-3D correspondences and finds the best 

geometrical transformation to match the correspondences; the 

transformation found is then evaluated on all remaining data, 

selecting the best overall transformation over a fixed number of 

random draws. The process is repeated until sufficient agreement is 

observed between different trials or, alternatively, until the number 

of 2D-to-3D correspondences that agree with the transformation 

(known as the inlier set) is sufficiently large. 

An alternative framework known as simultaneous localization 

and mapping (SLAM) [11,12] does not require a training dataset; 

rather, the structure of the environment is established by using the 

SfM algorithms on the sequence of previously observed images. 

New images are also matched against previously observed images 

in the sequence for localization purposes. SLAM is very popular in 

camera-based navigation of unknown environments. However, such  

Fig. 1. Flow chart of data processing pipeline for PERCEPT-V. 

a system is unnecessarily complicated for large public spaces that 

can be surveyed in advance. Similar methods by [13,14], and [15-

17] use SLAM, optical flow, and RBG-D imaging, respectively, for 

obstacle avoidance. 

There is prior research work on navigation systems for BVI users 

that leverage visual localization approaches both indoors and 

outdoors [18,19]. While most of these systems cover a wide range 

of functions, the end devices are inconvenient for daily use because 

they are heavy, complex, and expensive, which is not a feasible 

option for a majority of the users.  

 

B. Background Subtraction vs. Background Extraction 

 
There is a rich literature on background subtraction algorithms that 

are commonly employed in computer vision applications, where the 

background is not of interest to the application or system [20]. We 

will use the fuzzy self-organizing background subtraction 

(FuzzySOBS) algorithm [21] in our examples to compare the 

performance against the RPCA background extraction. FuzzySOBS 

poses a statistical model for all pixels of the background image and 

is one of the best-performing background subtraction algorithms in 

the literature. In terms of computational efficiency, the running time 

of FuzzySOBS and RPCA background extraction are 𝑂(𝑚𝑛) and 

𝑂(𝑚6𝑛6), respectively, where m and n are the width and height of 

the input frame.  

      Nonetheless, we believe that standard algorithms for 

background subtraction will not suffice for our purposes even 

though they are more computationally efficient than RPCA 

background extraction. This is due to the fact that these algorithms 

simply identify the pixels that correspond to activity in the image, 

but do not provide an estimate of the background for those regions 

of the field of view. Thus, even if the removal of the foreground also 

removed the presence of keypoint descriptors associated with them, 

the effect of occlusions and masking on the extraction of keypoint 

descriptors is still present. The effect of crowded activity in visual 

navigation for the blind has only recently begun to be studied [22-

24]. 

 

3. BACKGROUND EXTRACTION VIA RPCA 

 
As shown in Fig. 1, in the standard approach (without the shaded 

block), after keypoint descriptors are extracted from the acquired 

and reference images, a search finds the best match between the 

descriptors among the reference images that are used to obtain the 

3D model of the environment to those from the acquired image. 

Consequently, the pose estimation module calculates the most likely 

geometric transformation between the putative 2D-to-3D 

correspondences, providing an estimate of the location and 

orientation of the camera. Our proposed architecture adds the one 

shaded block: a background extraction scheme to remove activity 

from passerby before keypoint descriptors are obtained. By 

extracting the background, the proposed localization algorithm 
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reduces the likelihood of mismatches from features for the 

foreground (crowds) to the reference images and increases the 

likelihood of recovering more useful features about background 

(navigation space) that can match with the registered features and 

benefit the localization performance simultaneously. 

Let the acquired video be comprised of n frames containing m 

pixels each. We store this video in a matrix 𝐷 ∈  𝑅𝑚×𝑛 ; each 

column of the matrix D corresponds to a video frame, and each row 

represents the evolution of a specific pixel over the acquisition time. 

In RPCA, we consider the following decomposition for the video 

matrix [25]: 

𝐷 = 𝐴 + 𝐸,                                     (1) 

where A is a low-rank matrix corresponding to the background and 

E is a sparse matrix corresponding to the foreground or activity of 

passerby. This decomposition is motivated by the small number of 

degrees of freedom for the background and the localized and highly 

concentrated passerby activity. Note that only A will be subject to 

the processing used by the visual localization algorithm, while E is 

discarded. 

      The exact recovery of the low-rank matrix A of interest from the 

sum D can be solved by the following convex optimization problem: 

arg min
𝐴,𝐸

∥ 𝐴 ∥∗+ 𝜆‖𝐸‖1, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷 = 𝐴 + 𝐸,      (2) 

where ∥∙∥∗ denotes the nuclear norm of a matrix, ‖∙‖1  represents 

the 𝐿1 norm of a matrix, and λ is a positive weighting parameter. 

We apply the accelerated proximal gradient method [26] to solve the 

optimization problem in (2). Its convergence rate is O(𝑘−2), where 

k is the number of iterations. 

 

4. EXPERIMENTAL RESULTS 

 
In this section, we reveal the applicability of adopting RPCA 

background extraction over traditional background subtraction into 

our localization algorithm. Subsequently, we show the performance 

improvement for our proposed visual localization algorithm, 

including the RPCA background extraction. To showcase these 

improvements, we conduct two experiments. In our first experiment, 

we test the reliability of feature extraction from background-

extracted images using RPCA and FuzzySOBS by measuring the 

number/percentage of putative matches between the features on 

processed frames and those on reference images (feature matching 

block in Fig. 1). In our second experiment, we test the performance 

improvement (in terms of localization re) achieved by using RPCA 

background extraction to recover background-generated keypoint 

descriptors that can be useful for localization purposes. Since there 

is no benchmark dataset that is publicly available for our case, we 

collect our own dataset [27] with human crowds in a public space to 

evaluate the performance of the algorithm. 

 

A. Feature Extraction Reliability 

 
For our first experiment, we use data from video sequences captured 

at the UMass Amherst Campus Center. The reference dataset 

consists of images of the center’s first floor space that were taken 

while the center was closed. The test dataset consists of 63 video 

sequences taken in two groups: 26 sequences were taken during low 

levels of activity (winter break) and 37 sequences were taken during 

high levels of activity. The number of frames in each video sequence 

is 200 and the resolution of each frame is 192 x 108. We performed  

 

Fig. 2. Average performance of SIFT descriptor-based image 

matching for (i) original video sequences, (ii) backgrounds obtained 

from the FuzzySOBS algorithm, (iii) backgrounds obtained from the 

RPCA algorithm. Top row: Average number of SIFT feature 

matches for each frame of the video sequence. Bottom row: Average 

percentage of SIFT features matched during camera localization. 

Left Column: Sequences with low and medium-level activity. Right 

Column: Sequences with high-level activity. 

SIFT feature extraction and subsequent feature matching for three 

different versions of each video sequence: (i) the original video 

sequence frames, (ii) the background frames extracted from the 

FuzzySOBS algorithm, and (iii) the background frames extracted 

with the RPCA model.  

Fig. 2 shows the average number of matches from each of the 

video frames as a function of the frame index, as well as the average 

percentage of those descriptors that are successfully matched during 

the feature matching process. These quantities are averaged over the 

26 video sequences containing low activity. The results show that 

the quality of FuzzySOBS is poor, resulting in a very low percentage 

of features being matched. Moreover, the quality of the background 

degrades as further frames are processed. Furthermore, the 

percentage of keypoint descriptors matched from the RPCA 

background image is higher than the percentage matched from the 

original images, which is indicative of the higher proportion of 

background-generated keypoint descriptors obtained from RPCA. 

We also processed video sequences with high levels of activity, 

which poses a more challenging setting for background subtraction 

algorithms. The percentage of features that are matched between the 

captured images and the reference images is very small, as shown in 

Fig. 2, due to the large number of features obtained from the 

foreground activity. Since the background extraction algorithms are 

not completely successful, the percentage of matched SIFT features 

stays low. Nonetheless, it is still the case that the RPCA background 

image provides a larger proportion of background-generated 

keypoint descriptors (in aggregate) than the two alternatives. 

 

B. Improvement of Localization Performance 

 
For our second experiment, we collected an additional set of test data 

at the UMass Amherst Campus Center. The new test dataset contains 

77 video sequences and there are 15,400 frames in total. The number  

1924



Fig. 3. Comparison of number of 2D-to-3D correspondences (inlier 

set) before and after RPCA-based background extraction is applied 

to video sequence frames. Red and blue marks represent increases 

and decreases in the number of correspondences due to RPCA, 

respectively. 

of frames in each video sequence is 200 and the resolution of each 

frame is 480 x 270. The goal for this experiment is to determine the  

impact of RPCA background extraction on the performance of 

visual localization algorithm as measured by the number of 2D-to-

3D correspondences in the inlier set returned by the pose estimation 

(last block in Fig. 1) using RANSAC. An increase in the number of 

inlier correspondences is indicative of improved localization 

performance, given that there are more background-generated 

keypoint descriptors: these descriptors are recovered by RPCA and 

represent a single perspective hypothesis. We checked this impact 

by plotting the number of correspondences from the background 

image obtained by RPCA to the number of correspondences from 

the original image without processing by RPCA.  

      As shown in Fig. 3, we observe significant increments on the 

number of correspondences for many images after applying RPCA 

background extraction, as evident by the large number of points on 

the upper triangle of the figure. For the rest of the frames, almost all 

of the marks in the figure are close to the diagonal, implying that 

any negative effects on a frame from applying RPCA are minor. 

Based on our observation, the slight reduction in number is due to 

the presence of the blurriness caused by either the capturing or the 

background extraction. Among 15,400 frames, there are 9,339 

frames (60%) whose number of inlier correspondences after RPCA 

is larger or equal than that before RPCA. 

      Furthermore, since our interest focuses on recovering as many 

background-generated keypoint descriptors as possible for the 

localization algorithm when the background is almost covered by 

passerby (e.g., frames containing less than 10 correspondences, 

reflecting such scenarios), we analyzed the result particularly for 

these worst cases to check if RPCA background extraction can 

benefit the visual localization algorithm for this type of 

circumstances. Figure 4a shows a histogram for the increment of the 

number of correspondences due to the use of RPCA. The figure 

shows that the benefits of applying RPCA are much larger than the 

losses, since the range of increments is from -20 to 140. Among the 

737 worst-case frames, 716 frames (97%) have equal or   number of 
correspondences after applying RPCA background extraction. 

Figure 4b shows the cumulative error distribution function for 

localization with and without RPCA background subtraction in the 

processing pipeline. The figure presents the substantial  

 

 

Fig. 4. Left: Histograms for increment in number of 2D-to-3D 

correspondences (inlier set) after RPCA. The blue column denotes 

a decrease in the number of correspondences. Right: CDF of 

localization error in meters. 

improvement of localization performance after RPCA is applied due 

to the increment of number of 2D-to-3D correspondences, which 

occurs thanks to the higher number of background-generated 

keypoint descriptors recovered by the RPCA background extraction. 

Besides,  

the average localization error for these worst cases reduces from 

12.50m to 8.14m after RPCA is applied, reflecting that 35% of the 

localization error is reduced in average. These results imply that 

the increase in the number of correspondences after applying 

RPCA results in an improvement of localization performance. 

 

5. CONCLUSIONS 

 
In this paper, we propose PERCEPT-V, an indoor navigation system 

for the BVI users based on a novel visual localization algorithm 

resilient to crowds in the observed scene. We addressed the new 

challenges in localization faced by the system using RPCA 

background extraction to increase the localization reliability. Unlike 

popular background subtraction algorithms, RPCA background 

extraction enables us to model the background more accurately by 

leveraging a low-rank-plus-sparse decomposition of a matrix 

representation of the tested video sequence. With more useful 

information available in the extracted background, the proposed 

visual localization algorithm can increase its reliability in the 

presence of crowds. 

      Our experimental results indicate two positive findings. First, we 

show that RPCA background extraction outperforms FuzzySOBS in 

obtaining an accurate background model for PERCEPT-V. Second, 

we demonstrate an improvement of localization reliability when 

using RPCA background extraction that is due to the recovery of 

more background-generated keypoint descriptors that can be 

matched to those from the reference images. We anticipate future 

work in the direction of finding the best-performed RPCA algorithm 

implementation by comparing among all candidates [28]. We also 

remain open to the introduction of additional modules that can 

augment the background extraction to further improve the 

performance of PERCEPT-V. We will also consider how to discern 

between background and foreground regions within the set of 

keypoint descriptors obtained from each frame. The expectation is 

to distinguish between these classes of keypoint descriptors (and 

possibly more refined classes) by leveraging both signal processing 

and machine learning schemes for keypoint descriptor classification. 
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