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ABSTRACT

During the last few decades researchers in computer vision
have proposed various saliency models for images with the
common goal of classifying the image content by using the
measure of importance. However, compared to still images,
there is only a limited number of saliency detection algo-
rithms proposed for video signals. However, predicting where
a person looks in a video is relevant for applications such as
advertisement design, video re-targeting and editing. In this
work, we propose a novel method for video saliency detec-
tion that aims to detect the relative ranking of saliencies of
signboards in street videos. For that reason, we collected eye-
gaze data of participants viewing various street videos in free
viewing and task viewing scenarios, where the task was to
identify a place to have lunch at. Further, we quantitatively
analyzed the collected eye-gaze data in order to generate the
relative ranking of the signboards in the free viewing and the
task viewing scenario. Based on the analysis’ results, we pro-
pose a video saliency detection algorithm which can more ac-
curately predict the relative saliencies of signboards in street
videos. It can be seen that the prediction accuracy of our pro-
posed model outperforms the existing video saliency detec-
tion algorithms.

Index Terms— saliency, computational modeling, free
viewing, task viewing, heat map

1. INTRODUCTION

The human visual system has developed the ability to process
a scene by selecting the most relevant parts of the scene un-
consciously. This mechanism is called selective attention, and
has been developed in order to quickly spot danger, which was
key to human survival. Only within the last 10-15 years, re-
searchers in computer vision exploited the concept of human
selective attention for computational models of saliency pre-
diction. However, the saliency models developed so far are
limited to predict conspicuous location in static images [1-
5], whereas only a few saliency detection algorithms are pro-
posed for video signals [6-8]. Accurately predicting salient
regions in video signals is critical in many video process-
ing applications such as object detection, video re-targeting,
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robot navigation, and video compression. However, it is still
undiscovered to build a practical model for saliency detection
which can accurately mimic the human visual system.
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Fig. 1: Visualization of different tendencies of gaze landings around

the signboards in free viewing and task viewing scenario.

Visual attention in a scene is either being “pulled” to a
particular location by bottom-up features of the scene such as
color, intensity, and orientation, or ”pushed” to a particular lo-
cation by the top-down factors such as given tasks and goals.
There are several studies in vision research that have revealed
that gaze distribution during scene viewing is highly depen-
dent on the given task (e.g. free viewing and task viewing)
[9-11]. However, most of these studies have been conducted
on static images, and the impact of cognitive factors (e.g. a
given task, intentions) on video signals is largely ignored [14-
15]. This study quantitatively analyzes how different view-
ing strategies (free viewing and task viewing) influence the
gaze landings around the signboards in a street video, and
then propose an algorithm which can predict more accurately
the relative saliency of signboards during free viewing and
task viewing.

Most of the saliency detection algorithms are based on
the Feature Integration Theory (FIT) [12] of which the main
idea is to compute bottom-up features (spatial and tempo-
ral) in parallel and to fuse their saliency to get a so-called
master saliency map. However, some of the saliency detec-
tion algorithms are based on the guided search model [13]
where the master saliency map is generated by combining the
saliency map obtained from top-down information together
with bottom-up saliency maps. Following the guided search
model, most of the recent video saliency detection algorithms
are based upon integrating the spatial information with the
temporal information [6-8]. The main difference between al-
gorithms lies in the way bottom-up and top-down information
is represented. The study reported in [8] integrated top-down
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Fig. 2: Segmented signbords of restaurants in the street video and their c-orresponding saliency rankings, generated from the eye-gazeata
collected over thirty participants, (task viewing ranking: board 13, 5, 14, 11, 15, 12, 2, 1,6, 7, 10, 16, 3, 8,4, 9.)

information represented as semantic cues, such as faces and
speech, with bottom-up saliency maps obtained from clas-
sical saliency algorithms. Similarly, the study in [17] rep-
resented bottom-up information as a color histogram of the
video frames, while the temporal map calculated the motion
between images by applying RANSAC.

Although there are many advances in video saliency de-
tection algorithms being made recently, how successfully
these algorithms can be used in different computer vision
applications still remains a key issue. The performance of
these applications depends on the prediction accuracy of the
saliency detection algorithm. The proposed study analyzes
how well a bottom-up saliency prediction algorithm can be
used in a novel application of predicting the relative ranking
of the saliency of the signboards in street videos.

Our main contribution is three-folded. First, we introduce
a new eye gaze dataset collected over 30 observers viewing
two street videos in both free viewing and task viewing sce-
narios, the tasks being to look for a place to have either lunch
at. Secondly, we propose a metric for quantitative analysis of
the collected eye gaze data to find differences in tendencies
of gaze distribution for signboards in street videos during the
free viewing and task viewing. Finally, we propose a mod-
ification to an existing algorithm to improve the prediction
accuracy of signboard saliency in street videos.

2. EXPERIMENT AND ANALYSIS

2.1. Participants and Video Stimuli

A total of 30 participants attended the experiment including
15 university students (3 female, 12 male, age range 21-31,
mean age 24.1) and 15 (4 female, 11 male, age range 66-80,
mean age 73.1) elderly subjects recruited from retirement job
centers in Tokyo. All the subjects reported normal or cor-
rected to normal vision. Participants were non-familiar with
the experimental procedure and had not seen the video stimuli
before the experiment. All of the participants signed a consent
form before the start of the experiment.

Two different street videos, each with a duration of two
minutes thirty seconds, were used in the experiment. Each
video consisted of 4,473 frames in total. Tobii x2-60 eye-

tracker was used for recording the eye-gaze data, whereas the
fixations and saccades were detected by the default Tobii fix-
ation filter (I-VT fixation filter). Video stimuli were displayed
at a 20 inch LCD monitor of 40 cm width, and all the partic-
ipants were viewing the stimuli at a 65cm distance from the
monitor surface.

2.2. Procedure and Task

The 30 participants who took part in the study were divided
into two groups of 15 participants each. In order to avoid re-
peating the same video in free viewing and task viewing mode
for any one participant, one group of the participants watched
the video in free viewing mode, whereas the another group
watched the same video with the given task of finding a place
to have lunch at. Each trial started with the gaze calibration
followed by the eye tracking while viewing the videos. Be-
fore the video stimuli began, participants were instructed to
either view freely or to fulfill the task.

2.3. Analysis

The different tendencies of the gaze landings during free
viewing versus task viewing can be seen in the heat maps
shown in Figure 1. Further, in order to determine the relative
saliencies of the signboards of restaurants in the street video
during the free viewing and task viewing mode, the distribu-
tion of fixation locations around the signboards has been an-
alyzed. To perform this study, first, we manually labeled two
instances of each signboard appearing in the video and then
interpolated the label for the rest of the frames containing the
same signboard. There was a total of 16 signboards labeled
in the street video for the full duration of their appearance
(Figure 2). Further, two different approaches were adopted to
analyze the gaze distribution around the signboards labeled in
the previous step. First, we simply measured the total number
of gazes that have landed on each signboard during the free
viewing and the task viewing scenario for the whole duration
of the signboard’s appearance. For the second one, we de-
veloped explorativeness metrics to measure the differences in
the scene exploration tendency during the free viewing and
the task viewing scenario.
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The relative ranking of the signboard saliencies based on
the gaze counting during free viewing is shown in Figure 2.
One way ANOVA was conducted to measure the statistical
difference between the signboard’s saliencies in the highly
salient, salient, average salient and least salient category. A
significant difference was reported for gaze landings among
the signboards belonging to the four different categories,
F(3,29) = 3.56,p < 0.001.

Further, entropy-based metrics were developed to mea-
sure the explorativeness during free viewing and task view-
ing. In order to do that, we first generated saliency maps by
convolving a Gaussian similar to [3] over all fixation locations
recorded for every second (30 frames) into a single frame. As
an output of this step, we have generated 149 saliency maps
(total 4473 frames divided by 30), showing the area explored
during each second of the video in a single frame. As shown
in Figure 3(a, b), the average of all these 149 maps shows
the average rate of exploration during free viewing and task
viewing of the street videos. Finally, the explorativeness is
measured by measuring the entropy of the 149 saliency maps.
Formulation of the explorativeness is as follows:

H(L;) =Y by, (1) % log(L / by, (1) )]
I

where I; is the saliency map of the total gazes recorded
during one second of viewing for which entropy is calculated
and hp, (1) is the histogram entry of intensity value / in image
1;, and L is the total number of pixels in I;.
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(a) Free Viewing (b) Task Viewing

(c) Board 14-Free Viewing (d) Board 14-Task Viewing

Fig. 3: (a, b) Average tendency of the rate of video exploration dur-
ing free viewing and task viewing. (c, d) Different tendency of ex-
plorativeness around board 14 only during free or task viewing

The average score of the entropy value suggests higher
explorativeness during task viewing than free viewing (task
viewing - 1.94, free viewing - 1.40). The one-way ANOVA
showed an effect of a task in scene exploration tendencies,
F(1,148) = 22.13,p < 0.001. Similarly, we have mea-
sured the explorativeness tendency for the labeled locations of
restaurant signboards only (Figure 3(c, d)), where the results
showed comparable explorativeness in both viewing scenar-
ios. We can see from Figure 3 (a, b), that the center bias ten-
dency is very different during free viewing and task viewing.

Table 1: Prediction accuracy of different algorithms for the gaze
over the full duration for free viewing and task viewing

GBVS | ssmap | m_map | emap | Itti
Free | 0.7969 | 0.7626 | 0.6996 | 0.7429 | 0.7961
Task | 0.7717 | 0.7350 | 0.6836 | 0.7045 | 0.7483

The center bias for two different viewing modes can further
be measured by measuring the euclidean distance between the
centroid of the average maps (Figure 3(a, b)) and the center
pixel of the image. The higher euclidean distance for task
viewing suggests the lower center bias in the task viewing
scenario compared to the free viewing scenario (203 and 267
are the euclidean distances in pixels for free viewing and task
viewing).

The proposed analysis suggests three major findings that
can be applied in upgrading the existing video saliency al-
gorithm to improve the prediction performance for the rela-
tive rankings of signboard saliencies. First, we generated the
ground truth rankings of the signboards based on the eye-gaze
data collected in the free viewing and the task viewing sce-
nario. Secondly, the explorativeness results indicate a higher
exploration tendency during task viewing compared to free
viewing. Lastly, we discovered a higher center-bias for free
viewing than task viewing.

3. PROPOSED MODEL FOR SIGNBOARD
SALIENCY DETECTION IN FREE VIEWING

Before proposing any algorithm for signboard saliency detec-
tion, we evaluated the performance of existing video saliency
algorithms in predicting the gazes landed on the signboards.
We selected a few state-of-the art algorithms [1-2] with their
motion included version, which can be aligned with the goal
of signboard saliency detection in street videos. The perfor-
mance of these algorithms are evaluated to answer the fol-
lowing two questions: (1) How accurately can they predict
the gaze points landed anywhere within the frame during free
viewing and task viewing? (2) How well can these algorithms
predict the gazes only for the signboards in those two viewing
scenarios?

As shown in Table 1 the performance of [1] and [2] in pre-
dicting the gazes for the whole frame is better than the s_map
[18], m-map[19], and e_map [6]. Similarly, the result of pre-
diction accuracy for signboards only showed that GBVS [2]
and Itti’s [1] perform better in predicting signboard saliencies
for the least and highest salient signboards as labeled in Ta-
ble 2. Motivated by the prediction accuracy of Itti’s model,
especially for the signboards belonging to the least and high-
est salient categories, we applied the recommendations from
the analysis’ results to upgrade Itti’s model with motion fea-
tures [1] to predict the signboard saliencies more accurately
for free viewing and task viewing scenarios. Another reason
for selecting Itti’s model was based on the fact that most exist-
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Table 2: The signboard saliency scores (AUC score) for the lowest
salient signboards (determined by gaze data) generated by different
algorithms in free viewing and task viewing.

Table 3: The signboard saliency scores (AUC score) for the highest
salient signboards (determined by gaze data) generated by different
algorithms in free viewing and task viewing (higher score is better).

Board Ranking (Task) | 12 15 13 11 Board ranking (Task) | 8 7 1 4
Board Ranking (Free) | 14 16 13 12 Avg. Board ranking (Free) | 4 5 3 1 Avg.
Board Name 3 8 9 16 Board Name 1 2 13 14
Free 0.73 | 0.53 | 0.65 | 0.70 | 0.65 Free 0.79 | 0.87 | 0.75 | 0.76 | 0.79
GBVSE2l sk 1076 1063 [ 052 [0.70 [0.65 | | OBVS2l k1083 (082 [0.64 [0.64 [ 0.73
Ttti's[1] Free 0.79 | 0.61 | 0.56 | 0.63 | 0.64 Ttis[1] Free 0.82 | 0.79 | 0.88 | 0.84 | 0.83
Task 0.71 | 0.72 | 0.57 | 0.71 | 0.67 Task 0.82 1 0.75 | 071 | 0.71 | 0.74
s.map[18] Free 0.67 | 0.61 | 0.68 | 0.60 | 0.64 s_map[18] Free 0.81 | 0.74 | 0.88 | 0.79 | 0.80
Task 0.69 | 0.65 | 0.58 | 0.77 | 0.67 Task 0.75 | 0.72 | 0.66 | 0.68 | 0.70
m_map[19] Free 0.61 | 0.65 | 0.61 | 0.61 | 0.62 m_map[19] Free 0.66 | 0.67 | 0.57 | 0.64 | 0.63
Task 0.63 | 0.62 | 0.54 | 0.56 | 0.58 Task 0.69 | 0.62 | 0.61 | 0.57 | 0.62
e mapl6] Free 0.70 | 0.62 | 0.54 | 0.61 | 0.61 e_mapl6] Free 076 | 0.72 | 0.75 | 0.74 | 0.74
Task 0.65 | 0.56 | 0.48 | 0.60 | 0.57 - Task 0.77 | 0.72 | 0.61 | 0.61 | 0.67
Ours Free 0.70 | 0.51 | 0.49 | 0.63 | 0.58 Ours Free 0.81 | 0.86 | 0.79 | 0.81 | 0.81
Task 0.71 | 0.55 | 045 | 0.56 | 0.56 Task 0.83 | 0.84 | 0.73 | 0.75 | 0.78

ing bottom-up models follow the same basic architecture pro-
posed by Itti et al. In these models the following basic struc-
ture can be observed: (a) Basic visual features such as color,
intensity, orientation and motion are extracted over multiple
scales of the image, where each scale represents a different
level of detail in the scene. (b) All features are investigated in
parallel, to obtain the conspicuity map for each feature chan-
nel. (c) These features are integrated to obtain the saliency
map.

The analysis’ result suggested that participants explored
the video more during task viewing than the free viewing.
Thus, to make our model adapt to free viewing and task
viewing scenarios, we focused on a feature scale selection
mechanism, where we identified the subsets of the feature
map scales that best represented the different levels of details
viewed by the observers during free viewing and task view-
ing. Further, we illustrated step combining feature maps at
different scales to generate the final saliency map.

6

Intensity = @J\/(Intensityi) )
6
Color = @W(Rgl) +N(BY;)] (3)

i=s

Orientation =

6
Z @N(Orienmtioni(ﬂ))

0€{0,45,90,135} i=s
(€]

where A represents the normalization and s is the starting
index from where maps were taken, scale 1 (finer) to scale 6
(coarser). Similarly to the motion features, we have selected
a subset of scales for representing the explorativeness in the
two different viewing scenarios.

The experimental result shows that the prediction accu-
racy of the signboard saliency detection during free view-
ing is highest for the following subset of the coarser scales
s = 4, 5,6, conversely the task viewing prediction accuracy
improved for the finer scales s = 1,2, 3. This result is in ac-
cordance with our previous findings of the explorativeness’
differences in free viewing and task viewing. Further, we
tuned the center bias weights in the existing model, based
on the analysis’ results that free viewing has a higher cen-
ter bias than task viewing. As shown in Table 2 and Table 3,
the weight tuning for the center bias together with the subset
selection for explorativeness in free viewing and task view-
ing have slightly improved the relative saliency prediction for
both highly and least salient signboards .

4. CONCLUSION

This paper presents a novel application of video saliency de-
tection for ranking signboards within a street video based on
the relative signboard saliencies. The major contributions of
this work are a collection of eye-gaze data for 2 street videos
for both free viewing and task viewing scenarios, and further,
the proposal of a quantitative analysis method based on the
rate of the explorativeness and center bias metrics. Finally
those results were used in upgrading the basic saliency model
for predicting signboard saliencies more accurately for free
viewing and task viewing.
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