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ABSTRACT

Camera calibration is a preliminary step in sports analytics
which enables us to transform player positions to standard
playing area coordinates. While many camera calibration sys-
tems work well when the visual content contains sufficient
clues, such as a key frame, calibrating without such informa-
tion, such as may be needed when processing footage cap-
tured by a coach from the sidelines or stands, is challeng-
ing. In this paper an innovative automatic camera calibration
system, which does not make use of any key frames, is pre-
sented for sports analytics. The proposed system consists of
three components: a robust linear panorama module, a play-
ing area estimation module, and a homography estimation
module. It can eliminate distortion and calibrate the cam-
era in each frame simultaneously, using correspondences be-
tween pairs of consecutive frames. Experiments on real data
evaluate the performance and demonstrate the robustness of
the system.

Index Terms— Homography estimation, sports video an-
alytics, image stitching

1. INTRODUCTION

Calibrating cameras in sports scenes is often vital for further
analysis such as player tracking, tactical and strategy analysis
etc; as the camera calibration enables us to determine the real-
world positions of players from their positions in a video.

In the past decade, the predominant approach has been the
use of a key frame to calibrate cameras. Typically, a frame
which has clear and complete line markings is set to be the
key frame and then remaining frames are calibrated by using
relationship between itself and the key frame. The early ap-
proach of [1] detected straight lines on the tennis court using
color and local texture constrains and subsequently computed
camera parameters by matching the intersections of detected
lines with a standard court model. Hu et al. [2] improved
on this method by adding color dominant segmentation to ro-
bustly determine the boundary of the basketball playing area.
Lu et al. [3] detected the boundaries of the basketball court
using a Canny detector [4] to calibrate a key frame and ap-
plied Iterated Closest Point (ICP) [5] to calibrate the remain-

Fig. 1: Two challenging examples in camera calibration.

ing frames. Sha et.al [6] manually located reference points
at the beginning of the swimming race frame. Then the cali-
bration is performed by locating the reference points between
adjacent frames using a SIFT feature extractor.

While many good methods have been proposed, a few
commonly noticeable issues endure. They are related to the
difficulty of finding, calibrating, and manually registering the
key frame. A few examples are shown in Fig. 1. The first ex-
ample only contains parts of the playing area due to the small
field-of-view. The limited information makes it unsuitable as
a key frame. While the second frame covers the whole play-
ing area, the missing line on the farthest side of the playing
area and the camera distortion limits it’s use as a key frame.
Such types of frames frequently appear in video clips which
are captured by low-quality cameras positioned in the stands
by a coach, or a spectator. Thus for such, there is no so-called
key frame that can be used as a reference. These examples
demonstrate a common problem: when a video clip does not
have a key frame, prior work generally fails due to the limited
information provided by each individual frame.

Aiming to address this problem, we present an auto-
matic camera calibration system to calibrate each frame in a
video clip which does not contain any key frames. The pro-
posed system consists of three components: a robust linear
panorama module, a playing area estimation module, and a
homography estimation module. In addition, this system can
undistort each frame while calibrating using correspondences
between adjacent frames. We focus on field hockey in this
work, but the technique is general and applicable to other
team sports such as soccer, rugby, etc.
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Fig. 2: (a) shows an initial correspondence matching completed by fast approximate nearest neighbor. (b) depicts the inliner
correspondences refined by RANSAC. (c) and (d) are an original frame with lens distortion and its corresponding undistorted
frame, respectively.

2. APPROACH

Our camera calibration system can be described as a com-
bination of three interacting, but clearly separated modules:
robust linear panorama generation (Sec. 2.1), playing area
estimation (Sec. 2.2), and camera calibration (Sec. 2.3).

2.1. Robust linear panorama generation

We formulate the frame stitching and frame undistortion tasks
as a combined panorama generation pipeline, enabling them
to be completed simultaneously.

The first step is to extract feature points in each frame.
SURF [7] is employed here to detect feature points. Subse-
quently, the DAISY [8] descriptor is used to describe dense
information of the distribution around the detected feature
points. The SURF detector and DAISY descriptor are chosen
for two reasons: (1) the SURF key point detector is stable in
local patches and invariant to scale and affine transforms. The
perspective transform between every pair of adjacent frames
is not significant and hence it can be regarded as an affine
transform. (2) The DAISY descriptor is a dense feature ex-
tractor which can produce distinguishable features in a sparse
area. Consider that what we are dealing with is a video se-
quence such that consecutive frames have a clear temporal
order. Thus a probability model [9] is not employed here to
estimate the correlation of one frame with every other frame.
A frame is only registered with its adjacent frame in a linear
way using a K-D tree.

Once the correspondences have been found, the correla-
tion between them can be formulated by utilizing c′i,j+1 =
H′j,j+1c

′
i,j , where H′j,j+1 is the homography matrix; c′i,j and

c′i,j+1 are the homogeneous coordinates of the ith pair of cor-
respondences that fall on two consecutive frames, j and j+1
respectively. Considering that matched correspondences may
contain outliers, we make use of Random Sample Consensus
(RANSAC) to refine H′j,j+1. Subsequently, a correspondence
pair is labeled as an inlier or outlier according to the distance∥∥H′j,j+1c

′
ij − c′i,j+1

∥∥ < σ.
Since a single camera can suffer from severe camera dis-

tortion (particularly when wide-angle zoom lenses are used),
the homography that we obtain from the above process may
not be accurate, and a camera undistortion algorithm is re-
quired. A standard approach is to make use of camera intrin-
sic parameters and extrinsic parameters to analytically undis-
tort frames. However, in sports videos captured from a sin-

gle camera, camera parameters vary due to changes in zoom,
and changes in the relative position between the playing area
and the camera. To tackle this problem, a correspondences-
based approach inspired by [10][11] is applied to undistort
each frame. Instead of estimating camera intrinsic parameters
and extrinsic parameters, we correct lens distortion in each
frame using correspondences found between adjacent frames.

To simplify the lens distortion problem, we assume that
the Center of Distortion (COD) is in the center of the frames.
So the lens distortion model of a single frame j is defined as
dij = 1

1+λjr2ij
d′ij , where λj is the parameter of the lens di-

vision model, rij2 is the squared distance between the feature
point i and the COD, and dij is the undistorted coordinate of
the ith pixel d′ij . Furthermore, the lens distortion parameter
in two consecutive frames is assumed to be the same (while
this is not strictly correct, the change between two consecu-
tive frames is typically very small). Then the undistorted ho-
mography Hj,j+1 which relates the two undistorted frames
cj and cj+1 can be defined as:

(D1 + λj,j+1D2 + λj,j+1D3)hj,j+1 = 0, (1)

where cj , cj+1 are the undistorted correspondences of c′j
c′j+1, hj,j+1 is the vectorized form of Hj,j+1, λj,j+1 is the
lens distortion parameter shared by the frame j and j+1, and
D1, D2, D3 are the factor matrices. Let us assume that

A =

[
D1

I

]
, B =

[
−D2 −D3

I

]
, v =

[
hj,j+1

λj,j+1hj,j+1

]
, (2)

such that the solution of λj,j+1 is found by iteratively solving
v from

(A− λj,j+1B)v = 0, (3)

and updating λj,j+1 by finding the smallest magnitude root of
the scalar quadric equation [12][10]:

v>(B> + λj,j+1A
>)(A− λj,j+1B)v = 0. (4)

In practice, a distortion parameter space {λ1,2, . . . , λj,j+1,
. . . , λn−1,n} can be obtained from a video sequence contain-
ing n frames. The frame j makes use of λj,j+1 to do undis-
tortion. The refined homography Hj,j+1 between the frame j
and j + 1 is obtained from λj,j+1 using Eq. 1.

Once the refined homography between every two consec-
utive frames has been established, the homography between
the anchor frame, n and the jth frame can be computed as
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Hj,n = Hj,j+1Hj+1,j+2 · · ·Hn−1,n. The coordinates in the
anchor frame are selected as the coordinate system in the
generated panorama. In practice, the anchor frame of the
panorama is often selected as the last frame of a video clip.

To minimize the errors produced in linear matching, we
employ the following error projection function to refine all of
the homographies jointly:

e =
∑
j

∑
i

Lij
∥∥H−1j+1,nHj,ncij − ci,j+1

∥∥2
2
. (5)

Then the parameters in each homography are updated using
the Levenberg-Marquardt (LM) algorithm [13].

Finally, the coordinate transformation between have gen-
erated panorama P and the frame Ij can be summarized as
cP = Hj,ncIj . Fig. 2 shows results obtained in the process of
robust linear correspondence matching. One may see that the
outlier correspondences that usually appear on players have
been filtered by RANSAC. Moreover, the camera distortion
has been eliminated.

2.2. Playing area extraction

After generating a robust panorama from the video clip, the
next step is to extract the playing area from this panorama.
As outlined in [14], a color image I can be represented as
a set of dominant colors and the percentage of occurrence
of each. Thus color information can be used as an efficient
low-level feature to segment the playing area from the back-
ground. Consider that the color of the playing area in pitch-
like sports games is usually green and is typically much differ-
ent to the surrounding area. The segmenation of the playing
area can be done by searching for the green dominant color
in the panorama. While there are a number of approaches
for extracting dominant color [15][16][17], we use a domi-
nant color segmentation approach using a combination of the
CIELAB color space and Kmeans clustering. The reason why
we chose CIELAB is that the chromaticity layer, ’A’, indi-
cates if the color falls along the red-green axis. As such, it
may distinguish the green playing area from the surrounds. To
improved the segmentation results, the small blobs and holes
are filtered using morphological opening and closing opera-
tion respectively. Finally, the contour of the playing area is
extracted by the Moore-Neighbor tracing algorithm and then
smoothed using Savitzky-Golay filters [18].

2.3. Camera calibration

The task of camera calibration in the sports domain is to com-
pute a geometric transformation H which maps a player loca-
tion p = [xp, yp, 1]

> in the image homogeneous coordinates
to a point p′ = [xp′ , yp′ , zp′ , 1]> in the real-world homoge-
neous coordinates on the standard pitch plane P ′ [3][1], i.e.
p = Hp′. Since the 3×3 matrix H has eight Degree of Free-
dom (DoF), four pairs of corresponding points are enough for
estimating H.

Taking the points on the detected contour of the play-
ing area as input, a RANSAC-based line detector is used
to parameterize all four boundary lines. Specifically, a
line l is hypothesized by randomly selecting two points
m = [xm, ym, 1]

> and n = [xn, yn, 1]
> which lie on the

boundary lines of the segmented playing area. The idea of
this method is to minimize the distance from the points in the
boundary point set to the randomly hypothesized line l; i.e.,

min
l

∑
[x,y,1]T∈P

l× [x, y, 1]>. s.t. l = m× n, m,n ∈ P, (6)

where P is the set of points [x, y, 1] on the boundary lines,
and × is the cross product of two vectors. After executing
for a number of iterations, typically 10, the solution with the
minimum distance is selected as a boundary line. To estimate
other potential boundary lines, the points whose distance to
the detected dominant line are less than T are eliminated and
then we repeat the above method several times to get the re-
maining boundary lines.

Once the four corner points in the panorama {pi}4i=1 have
been determined by the intersections of the detected lines, the
next step is to map them to the correspondences {p′i}4i=1 that
are in a standard field hockey model. Here, a Direct Lin-
ear Transformation (DLT) is applied to solve the homography
from a set of equations:[

0> −p′>i ypi
p′
>
i

p′
>
i 0> −xpip

′>
i

]
h = 0. i = 1, . . . 4 , (7)

where h ∈ R9×1 is the vectorized homography H. After
mapping the panorama P to the standard pitch model P ′, the
coordinates in frame Ij can be easily transformed to the stan-
dard pitch model using cP ′ = HHj,ncIj . Fig. 3 depicts
the segmentation results and the panorama which is gener-
ated from a set of frames. It can be seen that there are many
shadow players due to the image blending techniques. But the
borders of the pitch are clear.

3. EVALUATION AND DISCUSSION

The proposed system was evaluated on four different field
hockey video sequences. Each sequence was captured with
a single camera at a resolution of 1920 × 1080, and includes
a moderate range of rotations and zooms. The length of the
video sequences vary between 10 and 18 seconds, i.e., be-
tween 250 and 450 frames. All of the video sequences sweep
the whole playing area to ensure that the videos contain
enough information for camera calibration.

Table 1 summarizes the average number of correspon-
dences for each frame and the homography transfer error in
terms of four video sequences used in our experiments. The
average number of correspondences on each frame in a video
indicates the performance of the feature extraction method in
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Fig. 3: leftmost shows the panoraa generated from a set of consecutive frames. The next three pictures depict the segmentation
result, binarized playing area, and filtered playing area, respectively. The last image shows smoothed boundary lines and
detected border lines.

Fig. 4: The calibrated results of representative frames in the panorama. Their corresponding regions are shown by yellow,
magenta, cyan, red, green, blue, white and black box in the leftmost image. Meanwhile, the playing areas of these frames are
drawn by the same color in a standard field hockey model in the second image.

Method Metric Video Sequences
1 2 3 4

DAISY+SURF
points 264 288 281 272
RMS 2.519 2.318 2.732 2.556

KLT points 34 28 29 30
RMS 3.807 4.231 3.247 3.334

SIFT points 92 74 81 87
RMS 4.986 5.223 5.031 5.274

Table 1: The homography transfer error and the average num-
ber of the correspondences for the tested video sequences.

the panorama generation. The homography transfer error is
computed by Root Mean Square (RMS) error which reports
the pixel-level distance between the initially matched corre-
spondences and the correspondences obtained from bundle
adjustment. In addition, two commonly used feature extrac-
tion methods such as KLT [19] and SIFT are utilized to com-
pare with our method. One may see that both the RMS and
the average number of the points in our method outperforms
that of the other two methods.

Fig. 4 shows some representative frames and the calibra-
tion result of these frames. The calibration of these frames
can be derived from the panorama. One may see that the
perspective distortion of the panorama is eliminated and the
calibrated panorama is aligned to the standard field hockey
model. Thus the positions on the panorama can be properly
transformed to the standard field hockey model. We can see
that the near end of the field cannot be captured by our model.
This is a result of the zoom level of the camera leading to the
it’s effective position being in front of goal-line. As our tech-
nique is mapping images to a plane in front of the camera, we
can only capture the portion of the field in a 180 degree arc in
front of the camera.

We compare the proposed system to previous representa-
tive approaches like [1–3]. [1] focuses on tennis, where the

smaller pitch size means that all line markings can be fully
and clearly seen by a single camera. Each frame can be eas-
ily calibrated using the prior knowledge of the court lines. [2]
calibrates the frame to the standard basketball court by detect-
ing specific feature points on the court. These two methods
rely on extraction of specific pitch structures on the playing
area. However, each individual frame (Fig. 4: cyan, magenta,
etc. frames) in our dataset does not contain enough clues for
calibration in this manner due to the coverage of the cam-
era. As such these systems [1, 2] are not applicable for our
case. Regarding [3], it manually specifies the homogrpahy in
the first frame of the video and derives other frames’ location
using ICP. In contrast, our system can automatically locate
the frame relative to the pitch and undistort frames simulta-
neously. For some particular frames (Fig. 4: Black, Red, etc.
frames), where the whole structure of the pitch is mostly vis-
ible, these methods [1–3] will still fail due to distortion and
the disappearance of land marks in the far field of the camera.
Examining Fig. 4, the resultant panorama does contain some
small visual artifacts that are caused by small misalignments
in the panorama construction. The misalignments propagate
to the final perspective mapping. Compared to a semi auto-
matic analytical such as [3], the proposed approach is less
accurate, however it is fully automatic and places no require-
ments on the coverage of individual frames.

4. CONCLUSIONS

In this paper, an innovative camera calibration system for vi-
sual content without the need for a key frame is proposed.
This system calibrates each individual frame through calibrat-
ing the panorama generated from these frames. It utilizes the
holistic structure of the frames in a video rather than search-
ing a key frame in isolation. The experiments showed that our
system can work even if a given video does not contain any
one frame that captures the entire playing area.
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