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ABSTRACT

Region-based Fully ConvNet (R-FCN) designed for general
object detection is difficult to be directly applied for pedestri-
an detection, due to being with large human pose and scale
changes, and even with partial occlusion in surveillance sce-
narios. This paper presents a real time pedestrian detection
method with partial occlusion handling, which builds on the
framework of Region-based Fully ConvNet. We introduce a
deep Omega-shape feature learning and multi-paths detection
to make our detector being robust to human pose and scale
changes. A novel predicted boxes fusion strategy is proposed
to reduce the number of false negatives caused by partial oc-
clusion in crowded environment. Our end-to-end approach
achieved 95.35% mAP on the Caltech dataset and 97.43% on
Bronze dataset at a test-time speed of 86ms second per image.

Index Terms— Pedestrian detection, Deep Omega-shape
features, Non-maximum suppression with bootstrap, Region-
based fully ConvNet

1. INTRODUCTION

Pedestrian detection has attracted more and more attention in
recent years, as it is the foundation task of real-world appli-
cations such as automatic driving and intelligent surveillance.
The state-of-art pedestrian detectors are hybrid methods
which combine traditional, hand-crafted features and deep
convolution features. These methods (e.g. [1, 2, 3, 4, 5, 6])
make progress in detection accuracy at the price of expensive
time and memory costing, because of the structure of hybrid
features and ensemble classifiers. They are not suitable for
real-time applications on mobile platforms. On the other
hand, region-based fully convolution network (R-FCN [7])
achieves 79.0% mean average precision (mAP) on PAS-
CAL VOC [8] benchmark at the testing speed of 8 frames
per second (FPS). Although these end-to-end methods (e.g.
[7, 9, 10]) have achieved a good trade-off between accu-
racy and speed for general object detection, they have not
presented satisfactory results on popular pedestrian detec-
tion datasets (e.g. the Caltech set [11]) because of lacking
specialized optimization for pedestrian detection.

As is known to all that pedestrian detection is much hard-
er than general object detection because of the various poses
of people and different scales of changes. Moreover multiple
people often occur in close proximity, which may cause dif-
ferent degrees of occlusion, making it particularly challeng-
ing to distinguish between nearby individuals. These reasons
may explain the dissatisfactory performance directly using the
aforementioned general object detection methods.

It is reasonable to fine-tune a convolutional network for
pedestrian based on the general object detection framework.
It can not only take the advantage of fast detection speed,
but also solve the tough problems in pedestrian detection by
adopting a set of optimized methods. RPN+BF [12] combines
the region proposal network (RPN [13]) and boost forest-
s (BF) with hard examples mining strategy to solve the the
problem of different scales and various poses of people. Dif-
ferent from the above full-body human detectors which easi-
ly suffer from occlusions among individuals, some research-
es [14, 15] instead focus on the Omega-shape model (name-
ly the head-shoulder part of human body), especially for top
view surveillance scenes.

Similarly, this paper proposed a simple but effective
method based on the aforementioned general object detec-
tion pipeline for real-time pedestrian detection. Our method
selects R-FCN [7] as the baseline, because it can achieve
a better trade-off between accuracy and speed [16]. This
two-stage method consists of a RPN which aims to generate
bounding boxes of the potential objects and position-sensitive
score maps which are designed as the features for classifica-
tion and location tasks.

The contributions of our work can be summarized as fol-
lows: (a) we choose the deep Omega-shape features as the
representation model of people, making it possible for the R-
FCN to learn robust features. (b) we introduce multi-paths
detection and online hard examples mining to improve the
detection performance in multiple scales and complex scenes.
(c) we propose a non-maximum suppression with a bootstrap
strategy which can pertinently solve the problem of partial
occlusion in crowded scenes.
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Fig. 1. The framework consists of the basic RPN, multi-path R-
CNN and our rectified NMS. where (s, x, y, h, w) denotes the con-
fidence score and centric location of detection boxes. OHEM is only
used in training phase, making extracted features more discrimina-
tive.

2. PROPOSED METHOD

Our approach inherits the advantages of R-FCN [7], which
employs a region proposal network to generate candidate re-
gions of interests (RoIs) and the position-sensitive score map-
s to classify and locate targets. Meanwhile, novel residual
network (ResNet-50 [17]) is selected as the backbone of our
framework for its fewer computations and parameters without
accuracy decrease. Different from native R-FCN, We append
another position-sensitive score map followed by the conv4f-
layer and a fusion strategy of online hard examples mining in
training phase to detect small objects. Fig. 1 illustrates the
framework of our method.

2.1. Deep Omega-shape features
Most of the aforementioned methods use full-body human
for detection, they are easily lead to unsuccessful detection
when confronted with large pose variation and partial occlu-
sions. Hence, different from full-body human detectors, a
novel work [18] focused on the head part of human, and suc-
cessfully proposed an effective pedestrian detection method
in crowded scenes. It has been proved in our former re-
search [19] that the Omega-shape model is a salient feature
of head-shoulder region, especially for top view surveillance
scenes. We took two different ways of annotation: the full-
body annotation and the Omega-shape annotation on the
same dataset. Then, we separately fine-tuned two models
on the same dataset with different annotations. The different
detection results are shown in Fig. 2. It is obvious that the
deep Omega-shape features outperform full-body features
for its lower probability of missing detection. In addition,
Omega-shape annotation reduces the overlap rate of Ground-
Truth boxes, making subsequent processing easier. The head-
shoulder part of human body changes slightly despite the state
of poses and angles, which makes its within-class distance
smaller than full-body models.

Fig. 2. The boxes denote the final detection results on Caltech
dataset, with a confidence score above them. The left column us-
es a full-body annotation model, while the right column uses deep
Omega-shape features.

2.2. Multi-paths detection with OHEM
Other than a good feature representation model, some de-
tail tricks are requested after the analysis of real application-
s. Zhang et al. [12] found that RPN does have the ability to
achieve competitive results on proposal quality, however the
accuracy is degraded after feeding these proposals into the
R-CNN [20] classifier. We argue that such unsatisfactory per-
formance is attributed to two reasons as follows.

First, the responses of some small-size pedestrians disap-
pear in the position-sensitive score map because of too large
receptive field [21] in the last convolution layer (the conv5c-
layer). Inspired by SSD [9] which merges multi-paths detec-
tion results, another detection path is added in our framework.
A new position-sensitive score map followed by conv4f-layer
together with the native one followed by conv5c-layer are
both used to detect multi-scale pedestrians. The two path-
s with different receptive fields are complementary for each
other.

Second, in pedestrian detection the false predictions are
dominantly caused by confusions of hard background in-
stances. So it is significant to adopt hard examples min-
ing [22], which selects hard examples to perform back prop-
agation during training. OHEM is nearly a cost-free hard
examples mining because of all shared computations before
position-sensitive RoI pooling. Our loss function defined on
each RoI is a summation of the cross-entropy loss and the
box regression loss from deferent detection paths:

L(s, tx,y,w,h) =
2∑
i=1

(
Licls(s, c

∗) + λ[c∗ = 1]Lireg(tx,y,w,h, t
∗
x,y,w,h)

)
(1)

where c∗ is the RoI’s ground-truth label, i is the number of de-
tection paths (two detection paths in total), Lcls is the cross-
entropy loss for classification, Lreg is the bounding box re-
gression loss using smoothL1 metric and t∗ represents the
ground truth box. [c∗ = 1] is an indicator which equals to 1 if
the argument is true and 0 otherwise.

2.3. Non-maximum suppression with bootstrap

In state-of-art detectors [7, 9, 13], non-maximum suppression
(NMS [23]) is used to obtain the final set of detections as it
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Fig. 3. The green boxes denote the detection boxes before NMS,
and the red ones denote post-NMS predicated boxes. The native
NMS usually causes either missing detection or duplicate detection.
Our bootstrap strategy can deal with this problem, especially in the
condition of partial occlusion.

significantly reduces the number of false positives. The na-
tive NMS method often leads to missing detection of neigh-
bour pedestrians especially in crowded scenes. Different from
the traditional greedy NMS, Soft-NMS [24] decreases the de-
tection scores according to an increasing function of overlap
instead of directly setting the scores to zero. This method
does not work well enough in crowded scenes, in addition,
changing scores of detection boxes is not beneficial to subse-
quent analysis. Hence, we propose a rectified method with a
strategy of bootstrap. Overlap rates r and similarity metrics m
of two boxes are used simultaneously to distinguish whether
the two boxes are belong to the same person. We define a
similarity metric for bootstrap strategy in Eq.(2).

m = e−((1−2λ)∗dxy+λ∗dw+λ∗dh)

dxy =

√(
x∗−x
w

)2
+
(
y∗−y
h

)2
dw = ‖w

∗

w − 1‖
dh = ‖h

∗

h − 1‖

(2)

where (x, y, w, h) denotes the box’s center coordinates, it-
s width and height, respectively. Variables (x∗, y∗, w∗, h∗)
are for the predicted box with a maximum score in the sort-
ed queue Q, and (x, y, w, h) for the other boxes in the sorted
queue. ‖ · ‖ denotes the L1-norm. λ denotes a weight, here
we set λ = 0.3. The final metric is a weighted sum of the
three deviations which represent the similarity degree of two
detection boxes. The processing scheme of our rectified NMS
is shown in Algorithm 1.

We find that the similarity metric is a salient difference
among nearby boxes because of the different figures and pos-
es for different individuals. Moreover, our defined similarity
metric is insensitive of parameters, it can perform well un-
der a large scale of threshold Tm range from 0.2 to 2.0. We
used the native NMS and our NMS with bootstrap respective-
ly after the R-FCN detector, great improvements have been
achieved in Fig. 3. Our NMS with a bootstrap strategy does

Algorithm 1 Non-maximum suppression with bootstrap strategy
Inputs :detection boxes X with scores S,

threshold of similarity metrics Tm

Output :results list L
1. select the detection boxes X whose score S is greater than

0.5 and sort them in a descending order based on scores S
in a queue Q.

2. calculate the overlap rates r and similarity metrics m be-
tween the first one and the rest boxes in the sorted queue Q
according to Eq.( 2).

3. remove the boxes in sorted queue Q whose overlap r is
greater than 0.3 to a new backup queue B.

4. search the boxes in the backup queue B whose similar-
ity metric m is greater than a threshold Tm and mean-
while overlap r below 0.5 (namely, meet the condition of
(0.3 < r < 0.5)&(m > Tm) ).

5. append the searched boxes in B to the bottom of sorted
queue Q, and then remove the first box from the sorted
queue Q to the output list L.

6. return the output list L if the sorted queue Q is empty oth-
erwise repeat steps 2–5.

Table 1. Comparions of deep Omega-shape and full-body features
on Bronze and Caltech sets. All methods are based on standard R-
FCN with an optional strategy of OHEM.

Datasets annotation OHEM mAP

Bronze full-body 88.01%
Bronze omega-shape 93.69%
Bronze full-body yes 88.58%
Bronze omega-shape yes 94.01%

Caltech full-body 82.40%
Caltech omega-shape 81.35%
Caltech full-body yes 93.05%
Caltech omega-shape yes 93.43%

not require any extra training and is almost as fast as the native
version in terms of implementation, it can be easily integrated
into any other object detection pipeline.

3. EXPERIMENTS

3.1. Implementation Details
We comprehensively evaluated our method on two dataset-
s: Caltech [11] and Bronze. The Caltech dataset is made up
of approximate 250,000 images taken by in-vehicle cameras,
with a resolution of 640*480 pixels. The Bronze dataset is
our self-built dataset with images taken in an indoor surveil-
lance scenario from the top view. It contains 2,600 pictures
with 26,895 bounding boxes. Each image has a resolution of
960*540 pixels and ten instances on average. Two annota-
tions according to full-body and human head-shoulder omega
shape were labelled before training.

A predicted box is considered as a positive example if it
has an Intersection-over-Union (IoU) ratio greater than 0.5
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Table 2. Different combinations of tricks on two datasets using
only Omega-shape annotation.

Datasets OHEM Multi-paths NMS with mAP
bootstrap

Bronze 93.69%
Bronze yes 94.01%
Bronze yes yes 94.72%
Bronze yes yes 96.10%
Bronze yes yes yes 97.43%

Caltech 81.35%
Caltech yes 93.43%
Caltech yes yes 94.44%
Caltech yes yes 94.40%
Caltech yes yes yes 95.35%

with one ground truth box, and otherwise negative. This ar-
ticle adopts the area under the Precision-Recall curve (AUC)
as the mean average precision (mAP) of the detection algo-
rithms. We fine-tuned RPN to generate 300 proposals in both
training and testing phases, and then feed them into the R-
CNN classifier. The first half samples which are considered
as hard examples in a mini-batch are adopted to update the
weights in back propagation. After the convolution neural
network, we adopt our rectified non-maximum suppression
with a similarity threshold Tm = 0.8 to fuse the predicted
boxes. Other hyper-parameters of the network are the same
as in R-FCN [7]. Our proposed method is fine-tuned with
a learning rate of 0.001 for the first 40k mini-batches and
0.0001 for the second 30k mini-batches. We achieved a test-
time speed of 86ms on single Nvidia 1080 GPU using the
platform of Caffe. Code and datasets are made publicly avail-
able at: http://github.com/xuyuting45/pedestrian-detection-
in-crowded-scenes.

3.2. Experiments on two datasets
We fine-tuned the standard R-FCN on both Caltech and
Bronze datasets to analyze which kind of annotation method
is better for pedestrian detection. The performances in the
form of Precision-Recall curve are shown in Fig. 4(a) and the
quantitative indexes are given in Table 1. On Bronze dataset,
it is obvious that deep Omega-shape features are superior
to full-body features at an increasing mAP of 5.4–5.7 per-
cent. On Caltech dataset, deep Omega-shape features are a
little inferior to full-body model when OHEM is not adopted.
Because there are some small size of pedestrians in Caltech
dataset (about 40*20 pixels). The head-shoulder region is half
the size of full body, which makes the head-shoulder region
a hard example to detect. However, deep Omega-shape fea-
tures can achieve additional 0.4 percent of improvement than
full-body features when OHEM is adopted. So we can draw a
conclusion that deep Omega-shape features are more suitable
for pedestrian detection in surveillance scene by employing
OHEM.

We designed an experiment of different combinations of

Recall

P
re
ci
si
o
n

(a)

(b)

P
re
ci
si
o
n

Recall

P
re
ci
si
o
n

Recall Recall

P
re
ci
si
o
n

Fig. 4. (a) shows the comparisons of full-body and deep Omega-
shape features on two datasets. (b) shows the improvements of our
method compared with faster-rcnn and r-fcn.

tricks on both Bronze and Caltech datasets with only Omega-
shape annotation. The results are listed in Table 2. Our
structure of multi-paths detection can achieve an increase of
0.7–1.3 percent of mAP on Bronze and 0.95–1 percent on
Caltech. Meanwhile our rectified non-maximum suppres-
sion with a bootstrap strategy can obtain satisfactory 2.1–2.7
percent of improvements on Bronze and 0.9–1 percent on
Caltech. On the other hand, OHEM is necessary for Caltech,
which achieves more than 12 percent of promotion, Because
OHEM can well solve the problem of confusion instances on
a complex background.

In addition, we made a comparison of our method with
fine-tuned faster-rcnn [13] and r-fcn [7] on both Bronze and
Caltech datasets. It is obvious in Fig. 4(b) that our method
makes satisfactory promotion on the base of state-of-art al-
gorithms, which achieves a mAP of 97.43 percent on Bronze
and 95.35 percent on Caltech.

4. CONCLUSION

In this paper, we present a simple but effective method based
on Region-based fully convolution network [7] for pedestri-
an detection. A successful transfer learning from state-of-art
general object detection to pedestrian detection was accom-
plished by our work. We find that deep Omega-shape fea-
tures are more effective than full-body representation model
in surveillance. Not only the detection accuracy but also the
testing speed are promoted by our three improvements.
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