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ABSTRACT 

 
We propose a fast and straightforward noise level function 
estimation method for signal-dependent noise from single-image 
raw-data. The noise is modeled as Poissonian-Gaussian as it is 
naturally suited for the raw-data of modern digital imaging sensors. 
We believe that hard segmentation approach used in the 
conventional noise estimation schemes degrades the accuracy of the 
estimation by reducing the sample size for estimation. Increasing the 
sample size, by using soft segmentation approach, improves the 
accuracy of the estimation. We propose to estimate the noise 
variance directly in the image intensity domain via weighted 
summation. Experiments on synthetic as well as real raw-images 
show that proposed method provides reliable noise estimation 20 
times faster than the state-of-the-art. 

Index Terms— signal-dependent noise, Poisson noise, noise 
estimation, noise reduction 
 

1. INTRODUCTION 
 

Images are contaminated mostly during acquisition from the image 
sensor. The raw-data acquired by sensors undergoes many image 
processing stages. Estimating the noise characteristics is vital for 
improving the image quality in the subsequent image processing 
stages. Most of the denoising methods assume additive white 
Gaussian noise (AWGN), which can successfully model thermal and 
electrical noise.  The variance of noise under AWGN is fixed and 
signal-independent. However, due to the significant size reduction 
of pixel units, modern high-resolution imaging sensors are more 
sensitive to the photon noise [1]. Therefore, images acquired with 
modern imaging sensors are better modeled as signal-dependent, 
where the variance of noise is a function of signal intensity. The 
objective of the signal-dependent noise estimation methods is to 
predict the dependency of the noise variance on signal intensity, 
which is formally known as the noise level function.   

Generally, the existing signal-dependent noise estimation 
methods consist of four steps: 1) image segmentation, 2) smooth 
region detection, 3) noise variance estimation and 4) fitting obtained 
data samples into a global parametric model. To estimate the noise 
variance – intensity pairs, most common practice is to cluster a noisy 
image into several segments with nearly constant intensities [1, 4]. 
Any intensity variations within the homogenous regions of these 
segments are considered to be caused by the noise of constant 
variance. To detect such image regions some methods utilize high 
pass filters [5, 6], edge and texture extractors or local statistics [7, 
8]. In this manner, for each intensity segment, a set of homogeneous 
patches are obtained by means of hard segmentation. Generally, an 
input image is transformed into other domains, such as discrete 
cosine transform (DCT) [3, 9], and wavelet transform [1], where the 
noise can be distinguished from the original image information in 

high-frequency subbands.  For high textured images, the noise level 
estimates of aforementioned methods are overestimated. In addition, 
according to the law of large number, the estimation accuracy is 
naturally dependent on the size of a sample. Due to the hard 
segmentation, the number of valid candidates on some intensity 
segments are low. Therefore, the noise variance estimates on these 
intensity segments do not converge towards the expected value. In 
[13] authors propose a noise estimation approach, based on the 
principal component analysis (PCA), which does not require the 
existence of homogeneous regions. In [17] authors demonstrate the 
possibility of processing together large heterogeneous image regions 
containing different intensity levels and noise variances without 
compromising the accuracy of estimation.  

In the last step the obtained noise variance – intensity pairs are 
fitted into a global parametric model. Foi et al. [1] proposed to fit 
the estimated data into Poissonian-Gaussian noise model using 
iterative maximum likelihood fitting. Liu et al. [10] extended the 
method by using generalized signal-dependent noise model. Li et al. 
[3] proposed an iterative re-weighted least squares method, by 
taking the texture strengths of patches into account. Although these 
methods improve the accuracy of the noise estimation, they are 
computationally complex due to their iterative framework.  

In this paper, we propose a fast and accurate method for image 
signal-dependent noise estimation. We believe that increasing the 
sample size for estimation by using soft segmentation approach 
would improve the accuracy of the estimation. Based on the noisy 
image histogram we initialize a pre-fixed number of intensity 
centroids, whose occurrence is large enough [3], and directly 
compute the noise variance for each intensity centroid via weighted 
summation. Specifically, we assign the pixels, which have similar 
intensity with the intensity centroid and correspond to the low 
gradient region, with high weights and vice versa. Unlike other 
conventional approaches, we estimate the noise variance directly in 
the image intensity domain. To fit the estimated noise variance – 
intensity pairs into a noise model we utilize a least mean square error 
approach. 

The rest of the paper is organized as follows. In Section 2 we 
briefly review the image sensor noise model. The proposed method 
is then presented in Section 3. The accuracy and applications of the 
proposed method are discussed in Section 4. Finally, we draw 
conclusions in Section 5. 

 
2. NOISE MODEL 

 
We consider a generalized signal-dependent noise model [11] of the 
form 

(ݔ)ݖ = (ݔ)ݕ + ఊ(ݔ)ݕ ∙ (ݔ)ݑ +  (1)                      (ݔ)ݓ
where ݔ ∈ ܺ is the pixel position, (ݔ)ݖ is the observed noisy pixel 
value, (ݔ)ݕ is the original noise-free pixel value, ߛ is a parameter 
that controls the dependence of noise on signal, and (ݔ)ݑ and (ݔ)ݓ  
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are two mutually independent zero-mean Gaussian variables with 
variances ߪ௨

ଶ and ߪ௪
ଶ  respectively. The noise level function ((ݔ)ݕ)ߪ 

of generalized signal-dependent noise model can be derived from 
(1), and has the affine form 

൯(ݔ)ݕ൫ߪ =  ට(ݔ)ݕଶఊ ∙ ௨ߪ
ଶ + ௪ߪ

ଶ                            (2) 

The Poissonian-Gaussian noise model is a special type of 
generalized signal-dependent noise model with ߛ = 0.5 . In this 
paper, we consider this noise model as it is naturally suited for the 
raw-data of digital imaging sensors [1]. Our objective is to estimate 
the noise level function parameters (ߪ௨

ଶ and σ୵
ଶ ) from a single raw 

image.  
 

3. PROPOSED METHOD 
 

Ideally, one can obtain the true noise level function parameters if the 
noise variances corresponding to every intensity are known. Since 
we have a single raw-image at our disposal, it is impossible to 
estimate the noise variance for every intensity. In order to obtain the 
robust estimate of the noise variance, the size of the sample has to 
be large enough. Conventionally, the noise estimation algorithms 
segment an image into a collection of non-overlapping level sets, 
where each set is characterized by its mean value and allowed 
deviation.  The noise variance on each segment is assumed to be 
constant and is computed only on the homogeneous regions. 
Therefore, for highly textured images the sample size (set of 
homogeneous patches in a given intensity level) is small. Our 
approach focuses on increasing the sample size for estimation. We 
proceed with the detailed explanation of our proposed approach. 
 
3.1. Intensity Centroids 
 
The objective of the first step is to initialize a pre-fixed number of 
intensity levels for which the noise variances are to be estimated in 
the subsequent steps. Hereafter, we refer to these intensity levels as 
the intensity centroids. Similar to [3], instead of using all intensity 
levels we choose ܭ intensity levels whose occurrence are larger than 
the p-quantile ݌) ߝ =  0.5) of the noisy image histogram ℎ 

ܻ = [ݕ]ℎ | ݕ } ≥  (3)                                      {ߝ
where ℎ[ݕ] stands for the occurrence of an intensity level ݕ. In our 
experiments, we consider 8-bit (i.e., 256 intensity levels) grayscale 
images.  To avoid outliers due to the clipping problem [1], we 
systematically discard the minimum and maximum of the dynamic 
range [0, 255] [2]. From the obtained set of intensity levels, we 
choose a pre-fixed number ܭ of elements with fixed step-size ∆ =
|௒|
௄

. In this manner, we form a vector of intensity centroids 

(݇)ܫ = ܻ(݇∆);   ݇ = 1,2, …  (4)                           ܭ
 
3.2. Weighted Noise Level Estimation 
 
To ease the explanation of our approach we first consider the noise 
estimation of an image contaminated with AWGN of variance σ୵

ଶ  
(ݔ)ݖ = (ݔ)ݕ +  (5)                                     (ݔ)ݓ

Now consider the horizontal gradient ܩ௛ of the noisy image  

(ݔ)௛ܩ = ݔ)ݖ + 1) − ݔ)ݖ − 1)                            (6) 
Then, on the homogeneous region the variance of (6) can be derived 
as follows 

൯ଶ(ݔ)௛ܩ൫ߪ = ௪ߪ2 
ଶ                                        (7) 

In other words, the noise variance can be directly estimated by 
computing the variance of the gradient of homogeneous patches. 

௪ߪ
ᇱ ଶ =

1
2

൥
∑ ଶ(ݔ)௛ܩ

௫∈௑ೞ೘೚
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ଶ

൩        (8) 

where  ܺ௦௠௢ is a set of pixels that correspond to a homogeneous 
region. The application of equation (8) for signal-dependent noise 
model of the form (1) is straightforward. The image is segmented 
into a collection of non-overlapping level sets and the noise variance 
of each segment is computed using equation (8). The accuracy of the 
estimation, however, will depend on the accuracy of the 
homogeneous region detection and the sample size (|ܺ௦௠௢|).  

Backed by a Gaussian-mixture modeling, in [17] authors show 
that individual noise variance – intensity pairs estimates computed 
from large heterogeneous samples still follows (2), and the variance 
of a sample is a weighted summation of individual variances of 
homogeneous patches within the sample. Extending this observation, 
we propose a weighted noise variance estimation approach, where 
we directly compute the noise variance – intensity pairs for each 
intensity centroid via weighted summation as shown in (9) and (10), 
where ܺ is a set of all pixels in the image,  ܹ(ݔ, ݇) is the weight of 
a pixel ݔ ∈ ܺ for the estimation of the noise variance for an intensity 
centroid ݇, and  ߪᇱ(݇) and ݕ′(݇)  correspond to the estimated noise 
variance – intensity pair. We assign the pixels, which have similar 
intensity with the intensity centroid and correspond to the low 
gradient region, with high weights and vice versa: 

,ݔ)ܹ ݇) = ) ݌ݔ݁
−൫ܫ(݇) − ൯ଶ(ݔ)ݖ

ଵߜ
 ) ∙ ݌ݔ݁ ቆ

ଶ(ݔ)ܩ−

ଶߜ
ቇ    (11) 

where ܫ(݇) is the intensity centroid, (ݔ)ܩ is the gradient of a pixel, 
and ߜଵ and ߜଶ are sensitivity parameters. The first term of (11) takes 
into account the intensity similarity of the pixel with the intensity 
centroid. In our experiments, the sensitivity parameter ߜଵ is set to 
80 . The second term takes into account the flatness of the 
neighborhood around the pixel to reduce the effect of outliers. To 
discard the effect of the noise on weighting, in our implementation 
we employ smoothed horizontal, vertical and average gradients of 
the image as follows 

(ݔ)ܩ = ᇱܩ൫ݔܽ݉
௛, ᇱܩ

௩,  ௔௩௚൯                            (12)ܩ
The smoothed horizontal ܩ௛′ and vertical ܩ௩′ gradients are obtained 
by convolving the noisy image with [3×3] average operator and [3×1] 
gradient operators (6). The average gradient is obtained by 
convolving the noisy image with following operator: 

݃௔௩௚ = ൥
1 1 1
1 −8 1
1 1 1

൩                                     (13) 

To further improve the accuracy of our estimation we set the 
sensitivity parameter ߜଶ as the average noise variance. The average 
noise variance of the image is obtained by using the method 
presented in [12], where the variance of additive white Gaussian 
noise was estimated by using the difference of two Laplacians. 
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3.3. Noise Level Function Estimation 
 
Let us denote the estimated noise variance – intensity pairs and noise 
level function parameters as vectors of the form ܻ =
ଵݕ]

ᇱ , ଶݕ
ᇱ , … , ;௄ݕ 1,1, … ,1]் ݒ , = ଵߪൣ

ᇱଶ, ଶߪ
ᇱଶ, … , ௄ߪ

ᇱ ଶ൧
்

 and ݌ =
௨ߪ]

ଶ, ௪ߪ
ଶ ]், where [∙]் denotes the transpose operator. Then, one can 

formulate the global parameter estimation problem as the least 
square optimization problem of the form 

ᇱ݌ = arg min
௣

݌ܻ‖ − ଶ‖ݒ
ଶ                           (14) 

The problem (14) can be solved iteratively or directly by means of 
the closed form solution 

ᇱ݌ = (்ܻܻ)ିଵ்ܻ(15)                                  ݒ 
Considering the non-linearity of the curve due to the clipping 
problem, in our implementation we utilized the iterative solution, as 
it provided more robust estimates with negligible additional 
complexity. 
 

4. EXPERIMENTAL RESULTS 
 
We evaluate the performance of the proposed method against the 
conventional approaches [1, 13] in terms of computational 
complexity, accuracy of the noise level estimation, and their 
corresponding effect on the noise reduction. The algorithms were 
implemented in MATLAB on a PC with Intel Core i5-3770K 3.5 
GHz CPU and 8 GB RAM. Throughout the experiment, the number 
of intensity centroids was fixed (ܭ = 15).  
 
4.1. Estimation accuracy and complexity 

 
To evaluate the accuracy of the estimation we test algorithms on the 
noise free image set shown in Fig. 1(a). The synthetic noisy images 
are generated by using three parameter settings (σ୳ = 1.0, σ୵ =
2.0; σ୳ = 1.5, σ୵ = 3.0; σ୳ = 2.0, σ୵ = 4.0 ) corresponding to 
low, medium and heavy contaminations, respectively. We measure 

the accuracy of the estimation in terms of the root mean squared 
error (RMSE) against the theoretical curve (2). Table 1 shows the 
detailed comparison of estimation accuracy of the algorithms. The 
presented RMSE results are the average of ten realizations. The 
average RMSE indicates that proposed method outperforms the 
state-of-the-art for medium and heavy noise levels. In addition, 
while the estimation accuracy of all competing algorithms degrade 
with increasing the noise level, the proposed method is 
comparatively robust against noise level variations. The estimated 
noise level functions for ‘Traffic’ test image are depicted in Fig. 2. 
For high noise level, conventional approaches overestimate the 
noise standard deviation, while the estimates of proposed approach 
almost coincides with the theoretical curve. Foi et al. approach [1] 
fails when the noise level is low, while Pyatykh et al. approach [13] 
performs well (best RMSE). In Table 2, we summarized the average 
RMSE results and the average runtimes of corresponding 
algorithms. The proposed method on average has the best accuracy 
and is 20 times faster than [1], and 700 times faster than [13]. 

Table 2: Comparison of the average estimation accuracy (RMSE) 
and computational complexity (runtime).  

 Pyatykh et al.  Foi et al.  Proposed 

RMSE 
(x10-2) 

Runtime 
(sec.) 

RMSE 
(x10-2) 

Runtime 
(sec.) 

RMSE 
(x10-2) 

Runtime 
(sec.) 

Low 0.13 328.2 0.39 7.51 0.18 0.42 
Medium 0.25 321.8 0.41 8.84 0.23 0.44 
Heavy 0.39 287.7 0.48 9.92 0.27 0.46 
Average 0.26 312.6 0.43 8.75 0.23 0.44 

 
4.2. Application in Noise Reduction 
 
To highlight the effectiveness of the noise level function estimation, 
we utilize the obtained noise parameters on the noise reduction. The 

Table 1: Comparison of estimation accuracy in terms of RMSE (× 10ିଶ) against theoretical noise level function (2) for various noise le
vels (Low: σ୳ = 1.0, σ୵ = 2.0, Medium: σ୳ = 1.5, σ୵ = 3.0, and Heavy: σ୳ = 2.0, σ୵ = 4.0) 

Image Low contamination Medium  contamination Heavy  contamination 

Pyatykh  
et al. [13] 

Foi  
et al. [1] 

Proposed Pyatykh  
et al. [13] 

Foi  
et al. [1] 

Proposed Pyatykh  
et al. [13] 

Foi  
et al. [1] 

Proposed 

Street1 0.13 0.31 0.16 0.23 0.31 0.28 0.29 0.34 0.33 

Street2 0.08 0.30 0.30 0.23 0.40 0.33 0.26 0.44 0.36 

Yard 0.23 0.39 0.07 0.29 0.38 0.11 0.27 0.48 0.03 

Building1 0.09 0.29 0.06 0.21 0.39 0.04 0.57 0.53 0.01 

Building2 0.11 0.29 0.16 0.24 0.35 0.11 0.45 0.54 0.31 

Hallway 0.04 0.22 0.10 0.05 0.27 0.37 0.15 0.34 0.47 

Plaza 0.19 0.22 0.31 0.33 0.36 0.33 0.42 0.39 0.35 

Traffic 0.17 1.12 0.32 0.41 0.86 0.27 0.68 0.79 0.27 

Average 0.13 0.39 0.18 0.25 0.41 0.23 0.39 0.48 0.27 
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estimated noise parameters can be applied to any AWGN noise 
reduction algorithm to consider signal-dependent noise. In this paper,  
we consider BM3D [14], the state-of-the-art AWGN noise reduction 
algorithm. Similar to other approaches [1, 2, 16], in our 
implementation we utilized the variance stabilizing transformation 
(VST) [15]. The objective of this transformation is to transform an 
input signal-dependent noisy image into a domain where the noise 
has fixed variance (AWGN). The accuracy of VST and, 
consequently, the performance of the noise reduction are dependent 
on the accuracy of the noise parameter estimation. We evaluated the 
performance of only fast and practical noise reduction algorithms in 
terms of PSNR on real noisy image set shown in Fig. 1(b). The base 
for comparison is the original BM3D results with default parameters. 
We compared the performance of our scheme with the performance 
of VST-BM3D based method often referred to as state-of-the-art [1]. 
As shown in Table 3, the incorporation of the proposed fast 
estimation approach has the highest PSNR among compared 
algorithms.  Additionally, it is two times faster than [1], making it 
suitable for practical signal-dependent noise reduction applications. 
 

5. CONCLUSION 
 
We presented a fast and practical noise level function estimation 
method for Poissonian-Gaussian noise from a single image. The 
hard segmentation approach used in the conventional noise 
estimation schemes reduces the sample size of the estimation, 
consequently degrading the estimation accuracy. We showed that 
increasing the sample size for estimation, by using the proposed soft 
segmentation approach, is not only computationally efficient, but 
also improves the accuracy of the estimation. We initialize a pre-
fixed number of intensity centroids based on the noisy image 
histogram, and compute the noise variances for each intensity 
centroid in the image intensity domain via weighted summation. The 
pixels, which have similar intensity with the intensity centroid and 
correspond to the low gradient region, are assigned with high 
weights and vice versa. According to our experiments on synthetic 
and real noisy images, our method provides fast and reliable noise 
estimates.  

 
  a. 

 
  b. 

Fig. 2. Comparison of noise level function estimation with Foi 
et al. [1], and Pyatykh et al. [13] against theoretical noise level f
unction (2). The estimation is performed on ‘Traffic’ test image
for (a) heavy, and (b) low noise levels. 

  Image Noise 
Level 

BM3D [14] 

Original Foi et al. Proposed 

Shoes 35.11 40.96 40.83 41.09 

Kitchen 32.03 36.39 39.16 39.20 

Desk 26.12 33.42 33.50 33.40 

Sink 33.96 41.26 42.62 43.17 

Painting 33.39 36.53 37.19 37.53 

Papers 34.66 36.48 37.16 37.21 

Wall 27.06 33.14 34.79 35.08 

Flowers 35.38 37.01 39.93 39.65  

Average 32.21 36.90 38.15 38.29 

Runtime (in seconds) 13.17 35.14 17.09 

Table 3: Comparison of BM3D based noise reduction 
performance in terms of PSNR in dB. 

 
a. 

 
b.  

Fig. 1. Image sets used in experiments (a) noise free 704 ×
469 8-bit grayscale image set [18], and (b) noisy 2599 × 1733 
8-bit grayscale image set [19]. 
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