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ABSTRACT

Saliency detection has been a hot topic in computer vision. Among
existing approaches, a representative one is to use the convex hull
prior to find the salient object in the image; and there are many vari-
ants that are based on the convex hull prior. Most of these works used
a single center to construct the convex hull center prior map, while
few attention has been made on the use of multiple centers. In this
paper, we propose a multi-center convex hull prior based solution
for saliency detection. Particularly, our solution also integrates two
non-trivial optimizations: one is for obtaining an enhanced global
color distinction prior map, and another is for refining the prelimi-
nary saliency map. We experimentally evaluate our solution through
comparing against state-of-the-art algorithms. The results demon-
strate the effectiveness and superiorities of the proposed solution.

Index Terms— Convex hull; multi-center; saliency detection

1. INTRODUCTION

Visual saliency [1] is one of classical ways to find the regions of
interest in the image. In the past decades, abundant efforts have
been made on salient object detection, due to its widely applications
such as image classification, visual recognition, and text recogni-
tion [2, 3, 4, 5, 6, 7]. In the literature, existing saliency detection
algorithms can be generally classified into two categories: (i) the
top-down approaches, which are task-driven [8, 9, 10, 11, 12, 13];
and (ii) the bottom-up approaches, which are data-driven, and gen-
erate the final saliency map by directly simulating the underlying
low-level visual attributes [3, 14, 15].

The bottom-up approaches have many branches [14, 15, 16, 17],
and one of representative approaches is the convex hull-based ap-
proach [18, 19]. A major feature of this approach is to approxi-
mately locate the foreground seeds via the points of interest, see e.g.,
[20, 14, 21, 22, 23]. In these literature, most of works utilized a sin-
gle center to construct the convex hull center prior map, while few
efforts have been taken to use multiple centers. One can observe that,
in many images there may exist multiple targets/objects, the convex
hull generated from these targets could be the polygon with a large
span in some direction, or the similar cases; see e.g., the first row in
Fig. 1. Essentially, for images in which only a singe target/object
appears, the above phenomenon could also appear; see the second
row in Fig. 1. The single-center convex hull based algorithms in
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Fig. 1. From left to right: (a) input image; (b) explain; (c) saliency result
via single-center; (d) our result; (d) ground-truth.

these cases could fail to highlight the salient object effectively (cf.,
Fig. 1(c)), since it always assigns the high scores to the regions close
to the center of the convex hull (cf., Fig. 1(b)).

Inspired by the reasons above, this paper suggests a multi-
center convex hull prior-based solution (Section 2). The central
contribution of our solution is the construction of the multi-center
prior (MCP) map (Section 2.1). Besides, our solution also devel-
ops two non-trivial optimizations: (i) a more robust global color
distinction prior (GCDP) map (Section 2.2); and (ii) an improved
Bayesian optimization framework (Section 2.3). Our model is easy-
to-understand and implement, but without loss of effectiveness.
Empirical study on benchmark datasets shows the competitiveness
of our proposed model (Section 3).

2. OUR SOLUTION

In a nutshell, our solution works as follows. It first constructs an
MCP map and an enhanced GCDP map respectively. Then, it in-
tegrates them, getting a preliminary saliency map. It finally em-
ploys an improved Bayesian optimization method to obtain the re-
fined saliency map.

2.1. Constructing MCP map

Firstly, we use an existing algorithms [23] to construct a convex hull
C, and then use Harris algorithm [24] to find some points of inter-
est in C. Assume there are Np points of interest (found by Harris
algorithm). Second, we choose a set of k centers dynamically. For
clarity, we call this algorithm dynamic k-center algorithm. Third, we
construct the MCP map based on these k centers. In what follows,
we focus on the second and third steps.
I Dynamic k-center algorithm. For ease of presentation, we first
clarify several concepts. Let nl be the number of edges of C, and let
c denote the centroid of C. In addition, for the ith edge li, we denote
by dist(li, c) the distance between the edge li and the centroid c.
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The convex hull centroid radius, denoted by r, is defined as

r = argmini∈[1,nl](dist(li, c)) (1)

In addition, given a set Sn of n points in C, the coverage ratio
of Sn in C, denoted by η, is defined as

η =
α(C ∩ (

⋃n
i=1�(i, r + ε)))

α(C)
(2)

where α(·) denotes the area of a geometry, �(i, r + ε) denotes a
circle whose center and radius are the ith point in Sn and r + ε,
respectively. Note that, here ε is a parameter used to alleviate a too
small radius. In our paper, we set ε as follows.

ε = argmini,j∈[1,Np],i6=j(dist(PIi, P Ij)) (3)

where PIi and PIj denote two different points of interest.
Similarly, the overlap region size, denoted by s, is defined as

s =

n−1∑
i=1

n∑
j=i+1

α(�(i, r + ε) ∩ �(j, r + ε)) (4)

where ∩ denotes the intersection set of two circles. Based on s, we
define the overlap degree, denoted by ι, as follows.

ι =
s

n∑
i=1

α(�(i, r + ε))
=

s

n× α(�(i, r + ε))
(5)

Let τη and τι be two thresholds used for η and ι, respectively.
The algorithm works as follows. Firstly, it uses the set of Np points
of interest as the initial centers. It computes η and ι based on the
above equations, and sets τη = d ∗ η, where d ∈ [0, 1]. In our paper,
the parameters d and τι are empirically chosen, and set to 0.85 and
0.4, respectively. Then, it checks whether ι is less than τι, where
τι ∈ [0, 1]. If so, the algorithm terminates and returns these Np
points as the centers. Otherwise, it uses k-means algorithm [25] to
group these Np points into bNp

2
c clusters, and uses the centers of

these bNp
2
c clusters to compute “new” η and ι. This iteration termi-

nates until one of the following two conditions is satisfied: (i) ι < τι,
or (ii) η < τη . Assume that our algorithm terminates after i times
iterations, it shall return bNp

2i
c centers. In other words, k = bNp

2i
c.

Note that, the intuition behind our algorithm is to select appropriate
(i.e., k) points, based on points of interest, such that these k points
can cover C as much as possible (note: each point is associated with
a circle), while the overlap degree of these circles should be small.
I MCP map construction phase. Observe that, the k centers ob-
tained could be not uniformly distributed in C. To alleviate this
issue, we give different weights to different centers (when we con-
struct the MCP map). The weights are computed as follows. We
first construct a k × k matrix M, based on the distance of each pair
of centers. That is, M = [dist(i, j)]k×k, where i, j ∈ [1, k]. Then,
for each column in M, we accumulate all the values, getting a vector
V. That is,

V = {
k∑
i=1

dist(i, 1),

k∑
i=1

dist(i, 2), ...,

k∑
i=1

dist(i, k)} (6)

We normalize the vector V, and finally obtain the MCP map by pro-
cessing each each superpixel spi as follows.

Sfgi =
1

k

k∑
j=1

vj × e
(−

(xi−xj)
2

2δ2x
−

(yi−yj)
2

2δ2y
)

(7)

where vj denotes the jth item in V; xi (resp., yi) denotes the mean
horizontal (resp., vertical) coordinates of spi; δx (resp., δy) denotes
the horizontal (resp., vertical) variance; in our paper we set δx =
δy = 0.5, unless stated otherwise.

2.2. Obtaining a more robust GCDP map

This section shows how to construct the enhanced GCDP map. Gen-
erally speaking, our method can be viewed as a fusion of two ideas:
(i) using separately each side of image boundary to construct en-
hanced GCDP maps; and (ii) utilizing fully the convex hull (obtained
before) to further optimize the GCDP maps.
I Enhanced GCDP map construction phase. Existing methods usu-
ally group the superpixels in all boundaries into three clusters and
then construct GCDP maps [26]. Instead, we construct four GCDP
maps based on four boundaries. The intuition behind this idea is that,
the background often presents the local or global consistence with
one or some of these boundaries. Without loss of generality, assume
there are N superpixels in the image, and the number of superpixels
in the mth boundary is nm (m ∈ [1, 4]), our method constructs the
mth GCDP map, denoted by Gm, as follows.

Gm = [Sm,i]1×N (8a)

Sm,i =
1

nm

nm∑
j=1

1

w(i, j) + β
(8b)

where the element Sm,i denotes the saliency value of superpixel i
in the mth GCDP map; w(i, j) = exp(− ‖ci,cj‖

2δ21
), it measures the

color similarity of the ith and jth superpixels. In our paper the bal-
ance parameters δ1 = 0.2 and β = 10, respectively. Our method
above is inspired by [27], but different from theirs, since they use
Manifold ranking to construct the side-specific map, while we use
Eqs. 8a and 8b to construct the GCDP map.
I Further optimize the GCDP map. It is not hard to see that the
GCDP map obtained above could restrain the saliency value of some
superpixel regions whose colors are similar to the boundaries. To
address this issue, we further optimize the above map by fully uti-
lizing the convex hull obtained previously. This optimization can be
achieved by revising Equation 8b. Specifically, for each superpixel
spi we first compute a value, denoted by Di, as follows.

Di =


ϕ1

nm∑
j=1

(1− 1

w(i, j) + β
) spi ∈ RF

ϕ2

nm∑
j=1

1

w(i, j) + β
spi ∈ RB

(9)

where ϕ1 and ϕ2 are two weight factors, which are set to 0.8 and
0.2; RF (resp., RB) denotes the regions inside (reps., outside of) C.
By integrating Di into Equation 8b, obtaining the following.

Sm,i =
1

nm
(

nm∑
j=1

1

e
(−
‖ci,cj‖

2δ21

)
+ β

+Di) (10)

Finally, we merge all the four GCDP maps, obtaining the final GCDP
map G. 

G = [Sbgi ]1×N (11a)

Sbgi =
4∏

m=1

Sm,i, i ∈ [1, N ] (11b)

1868



where Sbgi denotes the saliency value of the ith superpixel.
Remark that, the method in [28] can be immediately used to in-

tegrate our MCP and GCDP maps. Specifically, for each superpixel
spi, let Si denote the saliency value after integration. It is computed
as Si = Sfgi × (1− e(−λS

bg
i )), where λ is a balance factor. Follow-

ing [28], in our experiments λ is set to 6, unless stated otherwise.

2.3. Refining the saliency map

While the integration method mentioned before can work correctly,
the edges of the salient object could be not well preserved [20].
Previous works (see e.g., [20, 14]) have attempted to improve the
saliency map via Bayesian optimization. This optimization ad-
dresses the issue above, and suppresses favourably the background
noise outside of the saliency region. Yet, it ignores another issue: the
saliency value of superpixel regions could be also restrained when
these superpixel regions are similar to the background. To fix it, we
employ an improved Bayesian optimization framework to refine the
initial saliency map. The rationale behind our method is to assign
larger weights for superpixels in C even if these superpixel regions
are similar to the background. Specifically, we do as follows.

Firstly, for each superpixel spi, we define the superpixel region
weight wi as follows.

wi =

{
e−gi , if spi ∈ RF

e−(gi+u), if spi ∈ RB
(12)

where u ∈ (0, 2) is a parameter used to balance the size of the ex-
ponent item, it is empirically set to 1; and gi is computed as

gi =
1

N1

N1∑
j1=1

Norm(‖ci, cj1‖)

+ (1− 1

N2

N2∑
j2=1

Norm(‖ci, cj2‖))

(13)

where N1 (resp., N2) is the number of superpixels in RF (resp.,
RB), andNorm(‖ci, cj1‖) is obtained as follows (notice: Norm(‖ci,
cj2‖) is obtained similarly).

Norm(‖ci, cj1‖) =
‖ci, cj1‖ − ‖ci, cj1‖min
‖ci, cj1‖max − ‖ci, cj1‖min

(14)

where ‖ci, cj1‖max refers to argmaxj1∈[1,N1]
(‖ci, cj1‖), and

‖ci, cj1‖min refers to argminj1∈[1,N1]
(‖ci, cj1‖).

Second, for each superpixel region spi we compute the “weighted”
observation likelihood. That is,

pw(spi|sal) =
wi∑

spj∈sal wj
(15a)

pw(spi|bg) =
wi∑

spj∈bg wj
(15b)

where sal (resp., bg) denotes the convex hull region RF (resp.,
RB); pw(si|sal) (resp., pw(si|bg)) refers to the weighted observa-
tion likelihood of the superpixel spi in sal (resp., bg).

Then, for each pixel v in the image, we compute the observation
likelihood as follows.

p(v|sal) =
∑

spi∈sal

pw(spi|sal)p(v|spi) (16a)

p(v|bg) =
∑
spi∈bg

pw(spi|bg)p(v|spi) (16b)

where p(v|spi) is the observation likelihood of pixel v in the super-
pixel spi, p(v|sal) (resp., p(v|bg)) is the observation likelihood of
the pixel v in sal (resp., bg). The final step is the same as that in
[20, 14], it constructs the final saliency map by Bayesian formula as
follows: p(sal|v) = p(sal)p(v|sal)

p(sal)p(v|sal)+p(bg)p(v|bg) .

3. EXPERIMENTAL EVALUATION

In our experiments, we use three evaluation metrics. (i) The
precision-recall (P-R) curve. We follow prior works [14, 26]
to obtain it. (ii) The F-measure, denoted by Fm. It is com-
puted as Fm = (1+ϕ2)·pv·rv

ϕ2·pv+rv
, where pv and rv denote the pre-

cision and recall values respectively, and ϕ2 = 0.3. (iii) The
mean absolute error (MAE), denoted by ξ. It is computed as
ξ = 1

na

∑na
i=1|S(pi) − G(pi)|, where na denotes the number of all

pixels in the image, S(pi) and G(pi) denote the information of the
ith pixel from the saliency map and from the ground true, respec-
tively. We compare our algorithm with two sets of algorithms: (i)
various convex hull-based algorithms including XL11 [20], GR [22],
LMLC [14] and MS [21]; and (ii) other classical or state-of-the-art
methods including MAP [29], wCtr [3], SF [30], PCA [17], IT [1],
RC [16], HS [15], GC [5], FT [31], CA [32], GMR [27], and LPS
[33]. We have evaluated our solution based on several well-known
datasets, including SED2 [7], MSRA-5000 [12], ASD [34], ECSSD
[15], THUR [35]; our solution performs well for all these datasets.
Due to space limit, we cover the quantitative comparison on SED2
as a sample (cf., Fig. 2).

From Fig. 2(a) we can see that, the P-R curve of our method
dominates the ones of other convex hull-based algorithms, demon-
strating the effectiveness of our solution. Furthermore, from Fig.
2(b) one can see that our MAE (resp., F-measure) value is the small-
est (resp., largest) one among all these convex hull-based algorithms.
This further verifies its effectiveness. On the other hand, Figs. 2(c)
and 2(d) show the comparative results of our algorithm against other
algorithms. One can see that the curve of our algorithm is above the
ones of all these competitors; in addition, regarding the F-measure
and/or MAE, our algorithm also performs better than these competi-
tors. These evidences show that our algorithm is competitive, com-
pared with other types of saliency detection algorithms.

Fig. 3 shows the qualitative comparison, i.e., the saliency maps
generated by our algorithm and the competitors. We can see that,
for images containing multiple objects (cf., Rows 1 and 2), some
competitors can not detect all salient objects, while our method can
achieve this; moreover, it highlights all salient objects and restrains
background noises favourably. These demonstrate the effectiveness
and robust of our model. On the other hand, for images containing a
single object (cf., Rows 3 and 4), our algorithm also performs well.
This further verifies the superiorities of our model.

Besides, we also examine the effectiveness of the proposed tech-
niques, respectively. Specifically, three baselines are used: base-
line 1 — without using the MCP map; baseline 2 — without using
the enhanced GCDP map; baseline 3 — without using the improved
Bayesian framework. Fig. 4 covers the comparison results. The first
row compares baseline 1 and our solution. We can see that the base-
line highlights some parts of the saliency region, while other parts
in the saliency region are not well highlighted. In contrast, our so-
lution highlights the saliency region uniformly, compared with the
baseline. Moreover, one can observe that, for the baseline, some
background regions that are near to the center of the “highlighted”
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Fig. 2. Comparison results: (a-b) convex hull-based methods; (c-d) other classic and/or state-of-the-art methods.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

Fig. 3. The saliency maps obtained based on different methods: (a) input images; (b) CA; (c) PCA; (d) SF; (e) GC; (f) LMLC; (g) HS; (h) GMR; (i) MS; (j)
wCtr; (k) MAP; (l) LPS; (m) Ours; and (n) GT (ground-truth).

(a) (b) (c) (d)

Fig. 4. (a) input image; (b) ground-truth; (c) baselines; (d) our solution.

saliency region are also highlighted. Yet, our method overcomes
this limitation. This essentially demonstrates the effectiveness of our
MCP map that assigns different weights for different centers, avoid-
ing over-highlighting some parts. The second row compares baseline
2 and our solution. It can be seen that, for the saliency maps gener-
ated by the baseline, some parts in the saliency region are still dark.
In contrast, our model can favourably highlight these parts, demon-
strating the effectiveness of the enhanced GCDP map. The third
row reports the saliency result of baseline 3. Compared with the
saliency map generated by the baseline, the map generated by our
model further suppresses the noises located in the saliency region.

Table 1. Average running time (second per image)
Method CA PCA HS GMR MS LPS Ours

Time 32.343 3.258 0.407 0.411 2.653 1.076 0.822

Code M+C M+C C M M M M+C

In addition, it also suppresses the background noises. This implies
that the improved Bayesian optimization framework can bring us an
extra benefit — further suppressing background noises.

Table1 compares the running time on the ASD dataset [34],
where “M” means “Matlab”, and “C” means “C/C++”. All tests are
conducted on a PC with 3.50 GHz CPU and 32 GB RAM. It can
be seen that our algorithm consumes relatively less time (i.e., no
more than 1 sec). Combining the superiorities validated in previous
paragraphs, on the whole our model is competitive.

4. CONCLUSIONS

In this paper, we proposed a new convex hull-based prior saliency
detection model. Our model is easy-to-understand and implement
but without loss of effectiveness. The central idea of our model is
to use multiple centers to construct the prior map. In addition, our
model also incorporates two non-trivial optimizations, which are de-
veloped for generating an enhanced GCDP map and for refining the
preliminary saliency map, respectively. We verified the superiorities
and effectiveness of our solution through extensive experiments. In
the future, we would like to adapt our solution and other techniques
to specific applications such as visual recognition.
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