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ABSTRACT

With the development of underwater optical sensors, man-
made object recognition from underwater optical images has
attracted wide attention. Deep learning methods have demon-
strated impressive performance in object recognition tasks
from natural images. However, it is difficult to collect large-
scale labeled underwater optical images for training such a
model. Based on the assumption that it is possible to acquire
sufficient labeled in-air images, the proposed work lever-
ages a combination of deep learning and transfer learning
to develop a novel recognition system for man-made object
from underwater optical images. The extracted features from
the proposed network have high representative power, and
demonstrate robustness in both in-air and underwater imag-
ing modalities. Therefore, our proposed framework has the
ability to recognize underwater man-made objects using only
labeled in-air images. The results of experiments on simulat-
ed data demonstrate that the proposed method outperforms
traditional deep learning methods in the task of underwater
man-made object recognition.

Index Terms— underwater optical image, man-made ob-
ject recognition, deep learning, transfer learning, unsuper-
vised domain adaptation

1. INTRODUCTION

Optical and sonar based systems are the two main imaging
modalities used for underwater vision-based navigation [1, 2,
3]. In underwater imaging systems, recognition of man-made
objects plays an important role for conducting research in do-
mains such as oceanographic species identification, pipeline
overhauling, mine detection, and naval studies, among others
[4, 5, 6].
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Compared with sonar imaging, optical imaging, due to its
ability to capture greater details and color, has found greater
applicability in underwater object detection tasks [7]. With
the development of underwater optical image sensors, man-
made target recognition from underwater optical images has
attracted greater attention in both oceanic engineering and im-
age processing [4, 8, 9].

Poor image quality is one of the biggest challenges in un-
derwater optical image analysis (Fig.1). Image quality is of-
ten low due to factors such as impurities in the water, and
high water density [4]. Besides, limited visibility due to the
exponential attenuation of light in deep waters also further
degrades image quality [7].

Fig. 1. Examples of underwater optical images with poor im-
age quality.

Very few studies have been conducted in the domain of
man-made target recognition from underwater optical images.
In both [10] and [11], the authors built systems to identify
and recognize underwater man-made objects using color in-
formation. Hou et al. [12] proposed a detection method from
features based on the color and the shape of underwater man-
made objects. Hussian et al. [13] proposed an underwater
man-made object recognition framework which integrated a
pipeline of different image processing techniques, including
equalization for preprocessing, line and edge detection, and
Euclidean shape prediction. In [14], the authors reported a
system for detecting the presence of man-made objects from
unconstrained subsea videos. They extracted object contours
as stable features, and then employed a Bayesian classifier to
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predict the presence of a man-made object in the image.
Recently, deep learning methods, due to their strong

representative power, have demonstrated impressive per-
formances in object recognition task from natural images
[15, 16]. Therefore, it is natural to consider the use of deep
learning to recognize man-made object from underwater op-
tical images. However, there are certain challenges which
must be addressed in order to effectively use deep learning
techniques for this task. For deep learning, one of the prereq-
uisites is the availability of large-scaled labeled data, needed
for the estimation of parameters during the training phase.
Also, similar to traditional machine learning methods, deep
learning assumes that the training and the testing samples
follow a similar distribution [17] - that is, the imaging pro-
cedures for capturing the training and the testing samples
should be the same or similar. In real-world scenarios, for
underwater imaging, it is challenging to collect and label
sufficient underwater man-made objects.

In this work, we assume that it is easier to acquire suf-
ficient training samples of man-made objects from in-air
images. For example, it is easy to capture sufficient multi-
view images before submerging the man-made objects in
water. Based on this assumption, we propose an underwa-
ter man-made object recognition framework which uses both
deep learning and transfer learning. During the training phase
of the proposed framework, we use a large-scale dataset of
labeled in-air images of man-made objects and combine this
with the unlabeled underwater man-made objects. During the
testing phase, we demonstrate that our trained model is able to
categorize the underwater man-made object with robustness.

The main contribution of our work is a system which
can use in-air images to effectively classify man-made ob-
ject from underwater optical images. This removes the need
to carry out the tedious and difficult task of collecting and
annotating large-scale underwater images.

2. METHODS

2.1. Underwater datasets generation

Inspired by He et al. in [18], underwater images are mostly
generated based on the depth of field analysis and simulation
of underwater environments. Since it can be challenging and
expensive to collect depth of field information for ordinary
optical acquisition devices, in this paper we introduce a new
method to satisfactorily generate underwater images without
the need of the extra depth information of field images.

As can be observed in Fig.1, color is the most dominant
feature which appears in underwater images. Nguyen et al.
[19] proposed a color transfer method based on illumination
awareness and 3D gamut to manipulate the color values of
source images to generate images with same appearances.

However, only relying on color transfer cannot realistical-
ly simulate the underwater environment. Therefore, based on

[20], we also apply turbidity simulation on top of color trans-
fer to obtain a better representation. The resultant signal is
therefore composed of two components, the first term is di-
rect transmission:

D = Icolore
−ηz, (1)

where Icolor is the image we obtained through color transfer,
η is the the coefficient of diffusion attenuation obtained from
a given real underwater patch, and z represents the adjustable
distance between Icolor and the reference underwater image,
with a higher value of z representing a higher turbidity.

The second term in the resultant signal is backscattering:

B = B∞(1− e−ηz), (2)

where B∞ is the backscatter in the line of sight (LOS) which
extends to infinity in water.

The resultant underwater image is generated by combin-
ing the two terms as follows:

Iunderwater = D +B −D ·B, (3)

and · represents the element-wise multiplication.

2.2. Framework for underwater man-made object recog-
nition

Fig.2 represents the flowchart of our proposed framework.
We employ AlexNet, which is a CNN based deep learning
implementation, as the base model, in our proposed frame-
work [21]. Our implementation consists of five convolutional
layers (conv), and three fully connected layers (fc). A recti-
fied linear unit (ReLU) is applied after the pooling operation
on the conv1, conv2 and conv5 layers. The classifiers are
implemented by the fully connected layers at the end of the
network. The feature vector generated by the last fully con-
nected layer is processed by the soft-max function, while the
vector of probabilities represents the final prediction results
of the categories.

The maximum mean distance (MMD), a distance metric
feature, is applied to both the fc7 and fc8 layers of the neural
network as the regularization and the transfer learning ele-
ment of our proposed framework. This minimizes the dis-
tribution of the data from the different imaging procedures
- in-air or underwater. According to the theory of transfer
learning, the labeled in-air images are assigned as the source
domain, while the unlabeled underwater images are assigned
as the target domain [22]. Therefore, the MMD can be written
in its square form using kernel operations:

D2
k(p, q) =Exs
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k(xsp, x
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q) + Ext
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q
k(xtp, x

t
q)

− 2Exs
px
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p
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t
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(4)

where E denotes the expectation, xsp and xsq are two sam-
ples from the source domain, while xtp and xtq are two sam-
ples from the target domain; and k is the Gaussian kernel
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Fig. 2. The training procedure of the proposed framework, where both labeled in-air images and unlabeled underwater images
are employed to train the network. The MMD feature metric is added in the last two layers for regularization. Conv denotes
the convolutional layer, and fc denotes the fully connected layer.

function defined by k(xi, xj) = e−‖xi−xj‖2/γ . We denote
Ds = {xsi , ysi }

Ns
i=1 as the set of Ns labeled samples from the

source domain, and Dt = {xtj}
Nt
j=1 as the set of Nt unlabeled

samples from the target domain; xsi represents the ith sam-
ple with ysi as the associated label in the source domain; and
xtj represents the jth sample in the target domain. Then the
objective function can be defined as:

min
1

Ns

Ns∑
i=1

J(Θ(xsi ), y
s
i ) + λ

`2∑
`=`1

D2
k(Θ`(Ds),Θ`(Dt)),

(5)
where the first term J is a common cross-entropy loss func-
tion, which is consistent with the corresponding part in
AlexNet [21]; Θ represents all parameters in CNN model,
and Θ(xsi ) denotes the conditional probability of assigning
sample xsi to label ysi . Since, we do not have any information
regarding the labels in the target domain, in the function J ,
both xsi and ysi are obtained from the source domain. Fur-
ther, Θ`(Ds) and Θ`(Dt) denote outputs of the `th layer of
the source and the target domains respectively. The `1 and
`2 terms refer to the fc7 and fc8 respectively in our setting.
We set λ(λ > 0) as the hyper parameter used to provide a
trade-off for the loss function. Therefore, in our setting, the
objective function can take advantage of both deep learning
and transfer learning methods.

During the testing phase, the underwater man-made object
images are directly predicted by the trained network.

3. EXPERIMENTS

3.1. Datasets descriptions

The Amazon dataset is used as the original in-air man-made
object dataset. The dataset consists of 2817 images of man-
made objects downloaded from amazon.com. There are 31
categories, with each category containing between 36 to 100
images. While previous works of research have mainly used

objects with regular shapes and sizes, the objects in the A-
mazon dataset are of irregular shapes captured from different
views [23].

The proposed work includes three experiments that
demonstrate our contributions. The images in each category
in the Amazon dataset and simulated underwater datasets are
equally divided into two parts: part 1 and part 2 with no over-
lap between them. In the first experiment, both the training
and the testing data are taken from the underwater imaging
system. Thus, the training and the testing data are simulated
underwater images have the same turbidity values, which are
generated from images in part 1 and part 2 respectively. The
experiment is set up to validate the performance of AlexNet,
when the training and the testing data are generated using the
same imaging system.

The second experiment is designed to evaluate the perfor-
mance of AlexNet when the training data contains both la-
beled in-air images from the source domain and unlabeled
simulated underwater images from the target domain from
part 1, and the testing data only contains unlabeled simulated
underwater images from part 2. Experiment 3 is set up with
similar data and objectives as experiment 2. It is set up to val-
idate the performance of the proposed framework while using
transfer learning along with the traditional CNN model.

The simulated underwater images used in the three exper-
iments are generated from the in-air images through a series
of steps as follows. The top-left red-box in Fig.3 indicates a
sample from the original Amazon dataset, and I and II denote
two real underwater optical images used as reference images.
As shown in columns A and B of Fig.3, based on the works
described in [19, 20], we generate three simulated underwa-
ter datasets with three different values of turbidity for each
reference image by adjusting turbidity factor z in Eq.3. The
value of turbidity is increased from the top to the bottom of
Fig.3, with a larger value of z denoting a higher turbidity. We
denote the simulated underwater datasets with different tur-
bidity and reference images as A 1, A 2, A 3, B 1, B 2 and
B 3 respectively.
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Fig. 3. Examples of underwater optical datasets.

3.2. Implementation details

In our proposed implementation, the basic server settings are:
a 56 Intel(R)Xeon(R) CPU E5-2683 V3@ 2.00GHz, with
64G RAM and a NVIDIA GeForce 1080 GPU. All the im-
ages fed into the neural network are resized to the same size
of 227×227 pixels. The proposed network is pre-trained on
ImageNet [21, 24], and then fine-tuned with our own data.

3.3. Experimental results

As shown in Fig.4, first, we compare the accuracies of the
three experiments for datasets with different turbidities and
reference settings. The blue, yellow and green bars denote
the recognition results of the first, the second, and the third
experiments respectively. With an average value of 55.70%,
the AlexNet in the first experiment achieves the highest recog-
nition accuracy among all the three experiments. This is be-
cause in the first experiment, both the training and the test-
ing data are from the same domain of underwater images.
However, since in the second and the third experiments, the
training data and the testing data are generated using different
imaging systems, the performance of AlexNet in these exper-
iments decreases dramatically. For the second experiment,
AlexNet has an average accuracy of 17.33%. However, from
Fig.4, we can observe that our proposed framework signifi-
cantly outperforms AlexNet. The average value of accuracy
for the third experiment is 38.50%. This can be explained that
the proposed framework has the ability to transfer the knowl-
edge learned from the source domain to the target domain,
that is, from the in-air images to underwater images.

For a more specific comparison, we also calculate the ac-

Fig. 4. Comparison of the average accuracy of each simulated
underwater dataset.

curacies from the 31 categories of the dataset A 1 for the
three experiments. As shown in Fig.5, this dataset has the
best performance across all the categories in experiment 1 and
the worst performance in experiment 2. The accuracy of the
dataset in the third experiment is slightly worse than that in
experiment 1. The red curve indicates the number of train-
ing data per category. We observe that the accuracies of all
three experiments decrease for smaller sizes of training data,
for example, for categories such as bottle, trash can, etc.

Fig. 5. The accuracies of three experiments on 31 categories
with dataset A 1 . The size of the training data (red) for each
category is also plotted with the accuracies in the figure.

4. CONCLUSIONS

This work presents a framework for recognizing underwater
man-made objects from optical images. The work is based on
the assumption that labeled in-air images of man-made ob-
jects are easy to acquire. By introducing transfer learning to
a CNN model, the proposed method can simultaneously ex-
tract features that are representative as well as robust across
different imaging systems. This allows us to avoid having to
explicitly collect and annotate underwater images for training
the model. The recognition performances of our proposed al-
gorithm denote that the framework can be considered as an
effective basic deep learning tool for optical image analysis
in underwater vision-based systems.
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